ANNUAL MONITORING REPORT YEAR 6 (2017) TATE FARM (RIPSHIN BRANCH) STREAM/WETLAND RESTORATION SITE ASHE COUNTY, NORTH CAROLINA (DMS Project No. 372, Contract No. 004802) Construction Completed December 2011

Submitted to: North Carolina Department of Environmental Quality Division of Mitigation Services Raleigh, North Carolina

May 2018

DRAFT ANNUAL MONITORING REPORT YEAR 6 (2017) TATE FARM (RIPSHIN BRANCH) STREAM/WETLAND RESTORATION SITE ASHE COUNTY, NORTH CAROLINA (DMS Project No. 372, Contract No. 004802) Construction Completed December 2011

Submitted to: North Carolina Department of Environmental Quality Division of Mitigation Services Raleigh, North Carolina

> Prepared by: Axiom Environmental, Inc. 218 Snow Avenue Raleigh, North Carolina 27603

May 2018

Table of Contents

1.0 EXECUTIVE SUMMARY	1
2.0 METHODOLOGY	
2.1 Vegetation Assessment	3
2.2 Stream Assessment	4
3.0 REFERENCES	5

Appendices

APPENDIX A. PROJECT VICINITY MAP AND BACKGROUND TABLES
Figure 1. Vicinity Map
Table 1. Project Components and Mitigation Credits
Table 2. Project Activity and Reporting History
Table 3. Project Contacts Table
Table 4. Project Baseline Information and Attributes
APPENDIX B. VISUAL ASSESSMENT DATA
Figures 2 and 2A-2F. Current Conditions Plan View
Tables 5A-5B. Visual Stream Morphology Stability Assessment
Table 6. Vegetation Condition Assessment
Stream Fixed-Station Photographs
Vegetation Monitoring Photographs
APPENDIX C. VEGETATION PLOT DATA
Table 7. Vegetation Plot Criteria Attainment
Table 8. CVS Vegetation Plot Metadata
Table 9. Total and Planted Stems by Plot and Species
APPENDIX D. STREAM SURVEY DATA (2016)
Cross-section Plots
Longitudinal Profile Plots
Substrate Plots
Table 10a-10d. Baseline Stream Data Summary
Table 11a-11d. Monitoring Data
APPENDIX E. HYDROLOGY DATA
Table 12. Verification of Bankfull Events
Table 13. Wetland Hydrology Criteria Attainment Summary
Groundwater Gauge Graphs
APPENDIX F. ADDITIONAL SITE DATA
Figure 3. USGS Topographic Map
Figure 4. NRCS Soils Map
Preconstruction Photographs

1.0 EXECUTIVE SUMMARY

The Tate Farm (Ripshin Branch) Stream and Wetland Restoration Site (hereafter referred to as the Site) is situated within US Geological Survey (USGS) hydrologic unit 05050001 of the Upper New River Basin and is in a portion of NC Division of Water Resources (NCDWR) Priority Sub-basin 05-07-02. The project is located in the northwest corner of Ashe County, about 1 mile south of the Virginia state line and 3 miles east of the Tennessee state line (Figure 1, Appendix A). The Site is encompassed within a 61.92-acre easement located in a tract owned by Michael and Virginia Tate. The Site includes an unnamed tributary to Ripshin Branch (UT), Ripshin Branch proper, associated floodplain wetlands, and additional tributaries found on the property (Figure 2, Appendix B). This report (compiled based on DMS's *Procedural Guidance and Content Requirements for EEP Monitoring Reports*, Version 1.4, dated 11/7/11) summarizes data for Year 6 (2017) monitoring.

The project goals are as follows.

- Improve stream water quality and ecological function by excluding livestock, restoring pool and riffle sequences, and restoring tree canopy and instream large woody debris.
- Enhance aquatic and terrestrial habitat in the stream corridor and adjacent wetlands.
- Enhance and/or restore the ecological function of riparian wetlands.
- Restore the riparian corridor (forested buffer) for watershed and wildlife benefits.
- Enhance habitat for native brook trout (Salvelinus fontinalis) and improve fishery potential.
- Increase biodiversity of the stream ecology, riparian buffers, and wetlands.

These goals will be accomplished through the implementation of the following objectives.

- Improve channel geomorphology toward reference conditions by providing watershed scaled and Rosgen-typed channel dimension, adding floodplain benches where floodplain access is not feasible, restoring sinuous pattern to straightened reaches where possible, and adjusting profile as needed to restore or maintain sediment transport equilibrium.
- Restore stream-side floodprone area where appropriate (increase floodwater access to the floodplain).
- Reduce sediment and nutrient loading by reshaping and stabilizing banks, reducing bank scour, excluding livestock, and restoring riparian buffers.
- Enhance or restore wetland hydrology and vegetation in former pastures and filled wetlands.

After construction, five vegetation plots were established and sampled. During Year 2 (2013) monitoring, thirteen additional vegetation plots were established and sampled. Vegetation Success Criteria (from the approved *Ripshin Branch Stream & Wetland Restoration Plan* [NCDMS 2007]) include the following.

- Survival of planted vegetation should exceed 80 percent after 5 years following planting (minimum 260 stems/acre).
- Planted vegetation stabilizing at 20 years with distinct canopy, subcanopy, and shrub layers.
- Establishment of herbaceous cover over 75 percent of the soil surface in restored wetlands and riparian areas.
- Plant biodiversity dominated by native species, with minimal ecological impact from invasive species.

Overall, vegetation was below success criteria with an average of 252 planted stems/acre (excluding livestakes) across the Site. Six of the eighteen vegetation monitoring plots met, or exceeded success criteria. Plots 1-5 and 14 are located along the Ripshin Branch and unnamed tributary stream and wetland restoration areas. The vegetation within these areas is meeting success criteria with an average of 411 planted stems/acre. Additionally, four of the six plots in this area met or exceeded success criteria. Potential causes of the low stem counts at Plots 2 and 4 include excessive hydrology associated with wetland restoration and over competition by sedges and soft rush (Carex spp. and Juncus effusus, respectively). Plots 6-13 and 15-18 are located in the Enhancement (level II) areas throughout the remainder of the Site. Average total stem density throughout this area is 354 stems/acre. Additionally, only two of the twelve plots in these areas met or exceeded success criteria based on planted stem densities. Plots 15 and 18 have had zero planted stems since they were initially installed and measured during year 2 (2013). Plot placement according to the CVS methodology is random, and these plots were randomly placed in areas with no surviving planted stems. With just over two years between the planting of these reaches (May 2011) and initial CVS measurements (August 2013), it is difficult to pinpoint the cause of this planted stem mortality. Harsh, high elevation climate and nutrientpoor, rocky soils are likely factors attributing to the high rate of planted stem mortality in these areas.

In addition to low stem densities, one vegetation area of concern was noted at the beginning of 2013. An overbank event scoured the floodplain and deposited gravel and silt along both banks at the downstream end of Ripshin Branch near Vegetation Plot 5, and a number of planted stems were buried by debris and sediment. Although this area remains characterized by poor, rocky soils and it continues to scour a bit during overbank flows, the ground surface appears to have stabilized, with woody stems and herbaceous vegetation sufficiently reestablishing.

A visual assessment and geomorphic survey were completed for the Site. The visual assessment indicated that project reaches were performing within established success criteria ranges as shown below. During a 2013 heavy, summer rain event, a boulder was dislodged in a right bank structure in the lower portion of Ripshin Branch. The boulder has since been stabilized by dense herbaceous vegetation and is no longer dislodged; it has remained stable during year 6 (2017).

Over the course of the project, cross-section 8 on the Unnamed Tributary exhibited some thalweg movement. This was documented in the annual cross-section data as well as photographs. Prior to year 1 (2012) a gravel bar formed in the riffle at cross-section 8. Several high energy flow events during years 2 (2013) and 3 (2014) pushed much of this gravel downstream. This resulted in the thalweg migrating to the left bank of the stream and becoming slightly scoured at cross-section 8. The sediment was transported downstream and deposited in pools, which is captured in the cross-section 7 data. Though slight changes were observed in the cross-sectional area and thalweg position of these cross-sections, the channel movement is natural and does not indicate instability.

Stream Success Criteria (from the approved *Ripshin Branch Stream & Wetland Restoration Plan* [NCDMS 2007]) is as follows.

- Channel morphology retains the design stream type over the majority of the reach.
- Coarsening of riffle bed material in newly constructed reaches.

- Pool/riffle spacing should remain fairly constant.
- Maintenance of bankfull width at riffles within 10 percent of the design.
- Maintenance of bank height ratios at 1:1.
- Bank stability over 90 percent of altered channel reaches.
- Dimension and profile stability over 90 percent of altered channel reaches.
- No significant channel aggradation or degradation.
- Minimal development of instream bars.
- Biological populations (invertebrate and fish) remain constant or increase and species composition indicates a positive trend.

Success criteria for stream restoration will be based on stream stability assessed using measurements of stream dimension, pattern, and profile; Site photographs; visual assessments; and vegetation sampling. Streams appear to be functioning properly, emulate design conditions, and are trending towards success.

Wetland hydrology success criteria (from the approved *Ripshin Branch Stream & Wetland Restoration Plan* [NCDMS 2007]) is as follows.

- Hydrologic monitoring indicates groundwater within 12 inches of the ground surface for 10 percent of the growing season
- Increasing wetland vegetation
- Development of hydric soils
- Fulfill US Army Corps of Engineers (USACE) criteria for jurisdictional wetlands

Six groundwater gauges were installed at the Site in mid-October 2012; therefore, no groundwater gauge data is available for year 1 (2012) monitoring. Five out of the six groundwater gauges were saturated/inundated for well over 10 percent of the year 6 (2017) growing season. Gauge 4 malfunctioned at the end of the Year 5 (2016) growing season, and because the contracted monitoring period was over, the gauge was removed and was not replaced. Because the contract for additional Year 6 (2017) monitoring was not executed until October 2017, no data for this gauge is available for Year 6 (2017). Based on hydrology of the other gauges, it is likely that Gauge 4 would have met success for year 6 (2017).

Summary information/data related to the occurrence of items such as beaver or encroachment and statistics related to performance of various project and monitoring elements can be found in tables and figures within this report's appendices. Narrative background and supporting information formerly found in these reports can be found in the Baseline Monitoring Report (formerly Mitigation Plan) and in the Mitigation Plan (formerly the Restoration Plan) documents available on the NC Division of Mitigation Services' (NCDMS) website. All raw data supporting the tables and figures in the appendices are available from NCDMS upon request.

2.0 METHODOLOGY

2.1 Vegetation Assessment

Five vegetation plots (Plots 1-5) were established and marked during the Year 1 (2012) monitoring period, and 13 additional plots (Plots 6-18) were established and marked during the Year 2 (2013) monitoring period, yielding a total of 18 vegetation plots on the site. Plots were established by installing 4-foot, metal U-bar post at the corners and a 10-foot, 0.75 inch PVC at

the origin. The plots are 10 meters square or 20 meters by 5 meters and are located randomly within the Site. These plots were surveyed in October 2017 for the Year 6 (2017) monitoring season *CVS-EEP Protocol for Recording Vegetation, Levels 1-2 Plot Sampling Only Version 4.2* (Lee et al. 2008) (http://cvs.bio.unc.edu/methods.htm); results are included in Appendix C. The taxonomic standard for vegetation used for this document was *Flora of the Southern and Mid-Atlantic States* (Weakley 2012).

2.2 Stream Assessment

Annual stream monitoring was last conducted in July 2016; no measurements were taken during Year 6 (2017). Measurements were taken using a Topcon GTS 303 total station and Recon data collector. The raw total station file was processed using Carlson Survey Software into a Computer Aided Design (CAD) file. Coordinates were exported as a text/ASCII file to Microsoft Excel for processing and presentation of data. Pebble counts were completed using the modified Wolman method (Rosgen 1993).

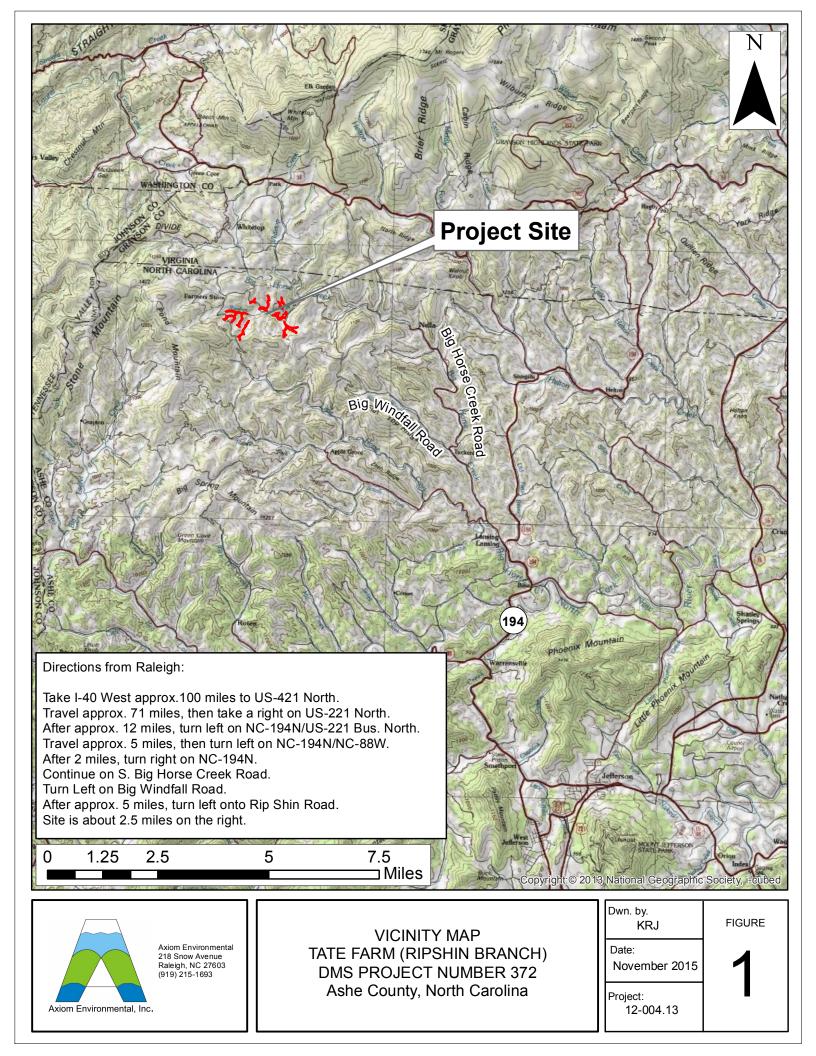
Eight permanent cross-sections, six riffle and two pool, were established and will be used to evaluate stream dimension; locations are depicted on Figures 2A and 2B (Appendix B). Cross-sections are permanently monumented with 4-foot metal U-bar posts at each end point. Cross-sections will be surveyed to provide a detailed measurement of the stream and banks, including points on the adjacent floodplain, top of bank, bankfull, breaks in slope, edge of water, and thalweg. Data will be used to calculate width-depth ratios, entrenchment ratios, and bank height ratios for each cross-section. In addition, pebble counts were completed at cross-sections 4 and 8, and photographs will be taken at each permanent cross-section annually.

Two monitoring reaches were established (Unnamed Tributary and Ripshin Branch) and will be used to evaluate stream pattern and longitudinal profile; locations are depicted on Figures 2A and 2B (Appendix B). Longitudinal profile measurements include average water surface slopes, facet slopes, and pool-to-pool spacing. Seventeen permanent photo points were established throughout the restoration reach; locations are depicted on Figures 2A and 2B (Appendix B). In addition, visual stream morphology and stability assessments were completed in each of the two monitoring reaches to assess the channel bed, banks, and in-stream structures.

2.3 Wetland Hydrology Assessment

Six RDS Ecotone WM groundwater monitoring gauges were installed within Site wetland restoration areas to monitor groundwater hydrology (Figures 2A-2B, Appendix A). Hydrological sampling will continue for five years with gauges recording daily and downloaded at a minimum of quarterly throughout the growing season (May 1-October 7). In addition, an on-site rain gauge was installed to document rainfall data for comparison of groundwater conditions with extended drought conditions. Onsite rain data will also be used to pinpoint the occurrence of bankfull events.

3.0 REFERENCES


- .Lee, M.T., R.K. Peet, S.D. Roberts, and T.R. Wentworth. 2008. CVS-EEP Protocol for Recording Vegetation, Levels 1-2 Plot Sampling Only, Version 4.2. Available online at <u>http://cvs.bio.unc.edu/methods.htm</u>.
- N.C. Division of Mitigation Services (DMS, formerly Ecosystem Enhancement Program). Unpublished. Procedural Guidance and Content Requirements for EEP Monitoring Projects, Version 1.4, dated 11/07/11. NC Department of Environment and Natural Resources. Available online at <u>http://portal.ncdenr.org/c/document_library/get_file?</u> p_1_id=1169848&folderId=2288101&name=DLFE-39268.pdf
- N.C. Division of Mitigation Services (DMS, formerly Ecosystem Enhancement Program). 2007. Ripshin Branch Stream and Wetland Restoration Plan - Ashe County, NC.
- Rosgen. 1993. Applied Fluvial Geomorphology, Training Manual. River Short Course, Wildland Hydrology, Pagosa Springs, CO.
- Weakley, Alan S. 2012. Flora of the Southern and Mid-Atlantic States. Available online at: <u>http://www.herbarium.unc.edu/WeakleysFlora.pdf</u> [September 28, 2012]. University of North Carolina Herbarium, North Carolina Botanical Garden, University of North Carolina, Chapel Hill, North Carolina.
- Weather Underground. 2014. Station at Jefferson, North Carolina. (online). Available: <u>http://www.wunderground.com/history/airport/KGEV/2014/1/1/CustomHistory.html?day</u> <u>end=7&monthend=6&yearend=2013&req_city=NA&req_state=NA&req_statename=NA</u> [June 7, 2014]. Weather Underground.

APPENDIX A

PROJECT VICINITY MAP AND BACKGROUND TABLES

Figure 1. Vicinity Map

- Table 1. Project Components and Mitigation Credits
- Table 2. Project Activity and Reporting History
- Table 3. Project Contacts Table
- Table 4. Project Baseline Information and Attributes

Table 1. Project Components and Mitigation Credits

Tate Farm (Ripshin Branch) Stream and Wetland Restoration Site (DMS Project Number 372)

				I	Mitigation Cred	its				
			Stream			Riparian Wetland				
Туре	Restoration Restoration Equivalent			Res	storation	on Equivalent	Buffer			
Totals		6551		2706		3.69	1	1.95		
				Pi	rojects Compone	ents				
Project Com Reach I				nment						
Reach 1A (Rips Area 2)		00+00- 08+00	800	Enhancement	ΕII	800	1:2.5		a powerline right-of- eceive 50% credit.	
Reach 1B (Rips Area 2)		08+00- 12+00	350	Priority II	R	400	1:1			
Reach 1C (Rips Area 2))	12+00- 14+85	285	Enhancement	E II	285	1:2.5			
Reach 2A (Rips Area 2))	14+85- 23+00	785	Priority II	R	815	1:1			
Ripshin Branch	– Area 2		518	Preservation	Р	518	1:5			
Reach 3A (UT -	– Area 1)	00+00- 01+24	132	Enhancement	ΕI	124	1:1.5		a powerline right-of- eceive 50% credit.	
Reach 3B (UT -	– Area 1)	01+24- 09+12	688	Priority I	R	788	1:1		a powerline right-of- eceive 50% credit.	
Area 1 Tribu	utaries		2419	Enhancement	E II	2419	1:2.5			
Area 1 Tribu	itaries		889	Preservation	Р	889	1:5			
Area 2 Tribu	utaries		1375	Enhancement	E II	1375	1:2.5			
Area 2 Tribu	utaries		920	Preservation	Р	920	1:5			
Area 3 Tribu			3204	Enhancement	E II	3204	1:2.5			
Area 3 Tribu			2261	Preservation	Р	2261	1:5			
Area 4 Tribu	utaries		3294	Enhancement	ΕII	3294	1:2.5			
Area 4 Tribu	utaries		8941	Preservation	Р	8941	1:5			
Wetland U	UT		0		R	1.5	1:1	of-way and will	nin a powerline right- receive 50% credit.	
Wetland U	-		1.24		Е	1.24	1:2		nin a powerline right- receive 50% credit.	
Wetland Ripshi	n Branch		0		R	2.30	1:1			
Wetland Ripshin	n Branch		2.74		Е	2.74	1:2		nin a powerline right- receive 50% credit.	

Table 1. Project Components and Mitigation Credits (continued)Tate Farm (Ripshin Branch) Stream and Wetland Restoration Site (DMS Project Number 372)

Component Summation									
Restoration Level	Stream (linear footage)	Riparian Wetland (acres)	Buffer (square footage)						
Restoration	2003	3.8							
Enhancement (Level I)	124								
Enhancement (Level II)	11377								
Preservation	13529								
Wetland Enhancement		3.98							
Creation									
Totals	27033	7.78							
Mitigation Units	9257 SMUs	5.64 WMUs							

Table 2. Project Activity and Reporting HistoryTate Farm (Ripshin Branch) Stream and Wetland Restoration Site (DMS Project Number 372)

Elapsed Time Since Grading Complete: 5 years 4 months Elapsed Time Since Planting Complete: 5 years Number of Reporting Years: 6

	Data Collection	Completion
Activity or Deliverable	Complete	or Delivery
USACE Wetland Verification		February 2007
Restoration Plan		March 2007
Final Design – Construction Plans		September 2009
Supplemental planting on enhancement (level II) reaches		May 2011
Construction		August 2011
Temporary S&E mix applied to entire project area		August 2011
Permanent seed mix applied to entire project area		August 2011
Containerized and B&B plantings for entire reach		December 2011
As-built Construction Plans		December 2011
Year 1 Monitoring (2012)	October 2012	December 2012
Year 2 Monitoring (2013)	November 2013	January 2014
Year 3 Monitoring (2014)	October 2014	November 2014
Year 4 Monitoring (2015)	October 2015	December 2015
Year 5 Monitoring (2016)	October 2016	December 2016
Year 6 Monitoring (2017)	October 2017	May 2018

Table 3. Project Contacts Table

Tate Farm (Ripshin Branch) Stream and Wetland Restoration Site (DMS Project Number 372)

	() etana restoration site (BRIST reject (amber 072)
Designer	Ecologic Associates, P.C.
	Greensboro, NC 27404
	Mark Taylor 336-382-9362
Construction Contractor	Land Mechanics Designs, Inc
	Willow Spring, NC 27529
	Lloyd Glover 919-422-3392
Planting and Seeding Contractor	Habitat Assessment Restoration Program
	Charlotte, NC 28262
Surveyor	Stewart Proctor
	Raleigh, NC 27603
	Herb Proctor 919-779-1855
Seed Mix Source	Green Resource
	Colfax, NC 27235
	336-855-6363
Years 1-5 Monitoring Performers	Axiom Environmental, Inc.
	218 Snow Avenue
	Raleigh, NC 27603
	Grant Lewis 919-215-1693

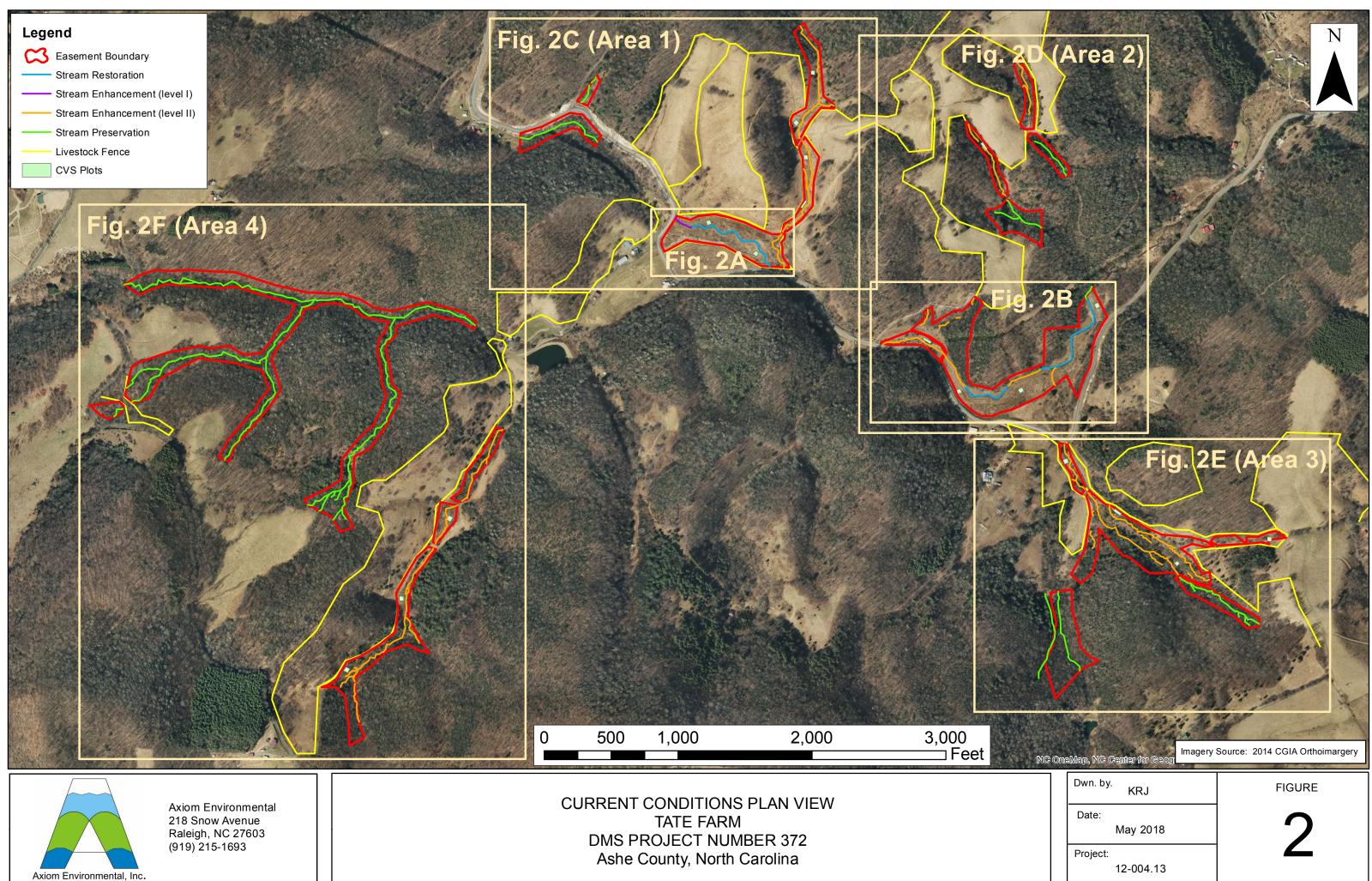
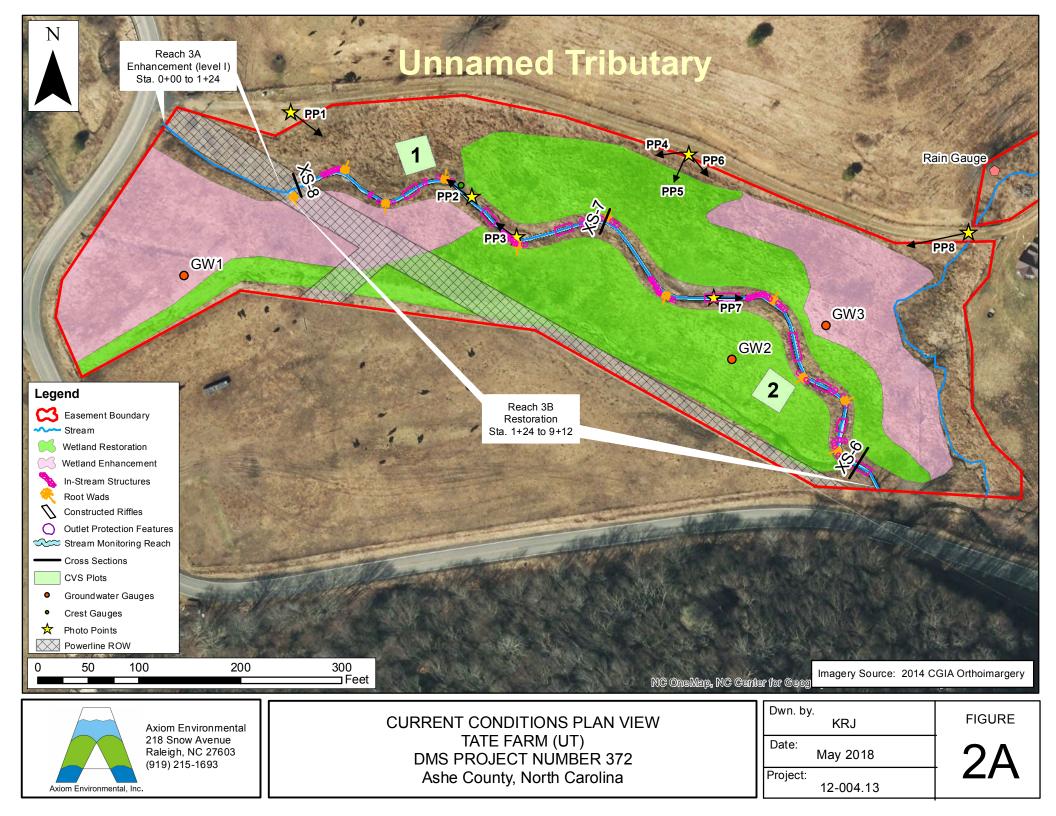
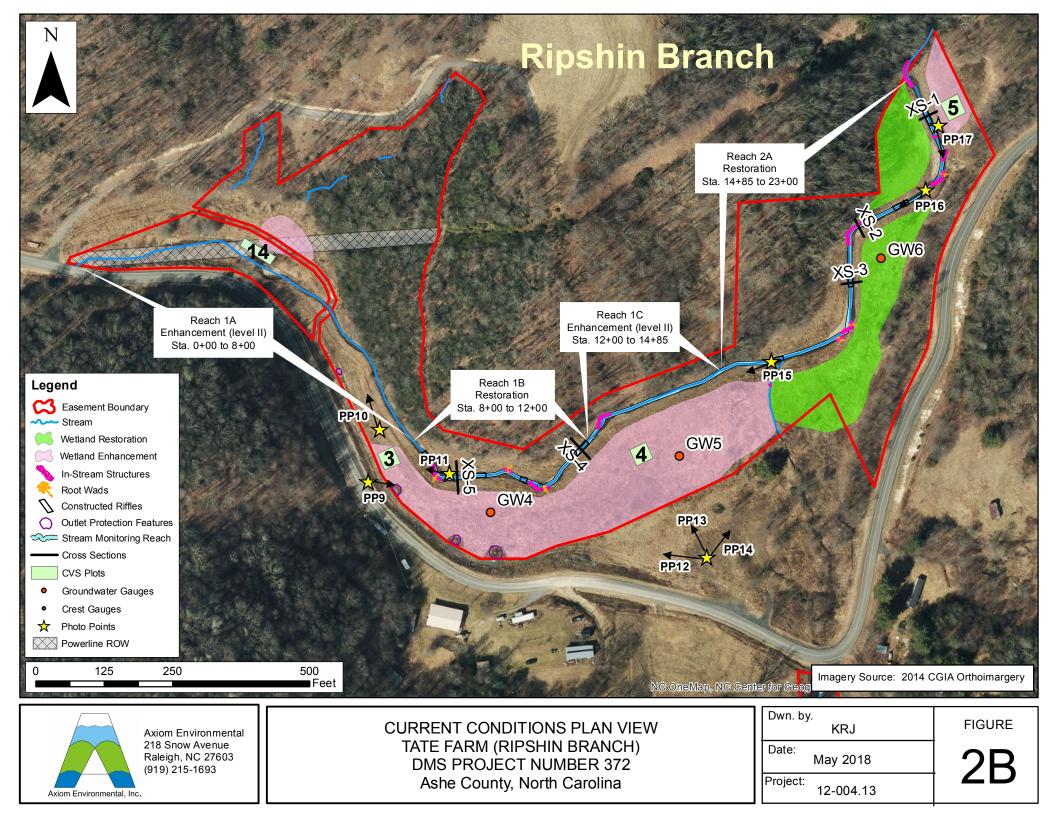
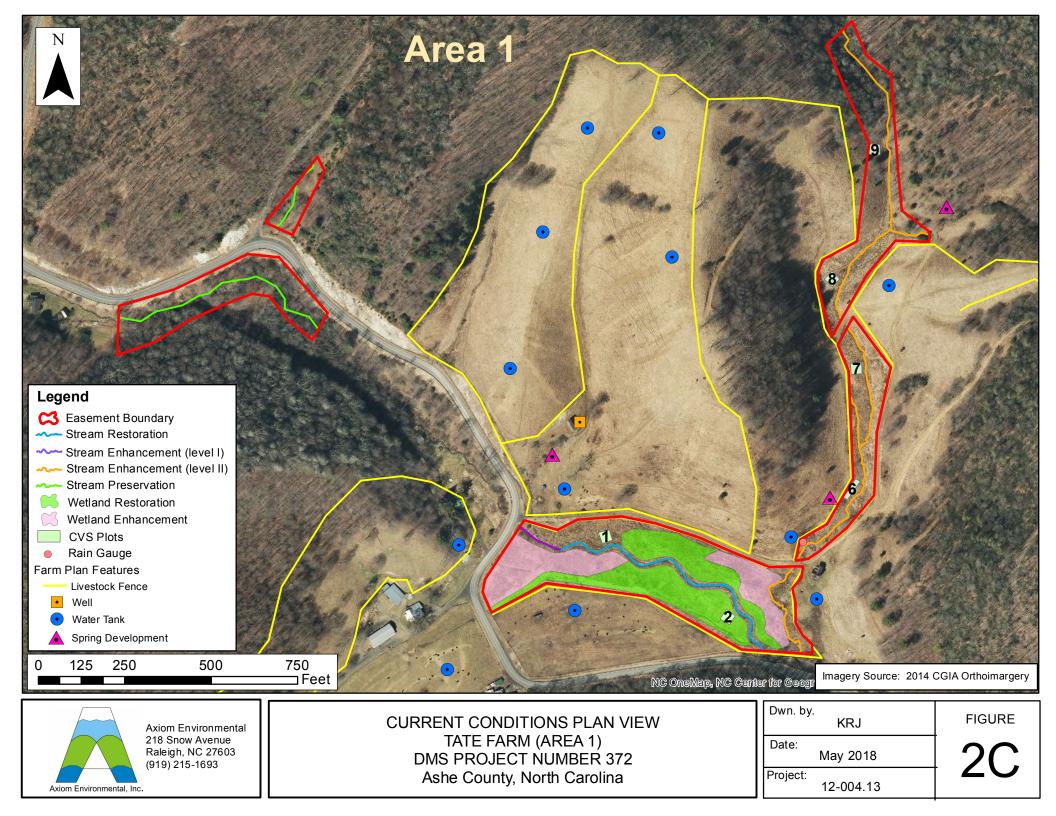
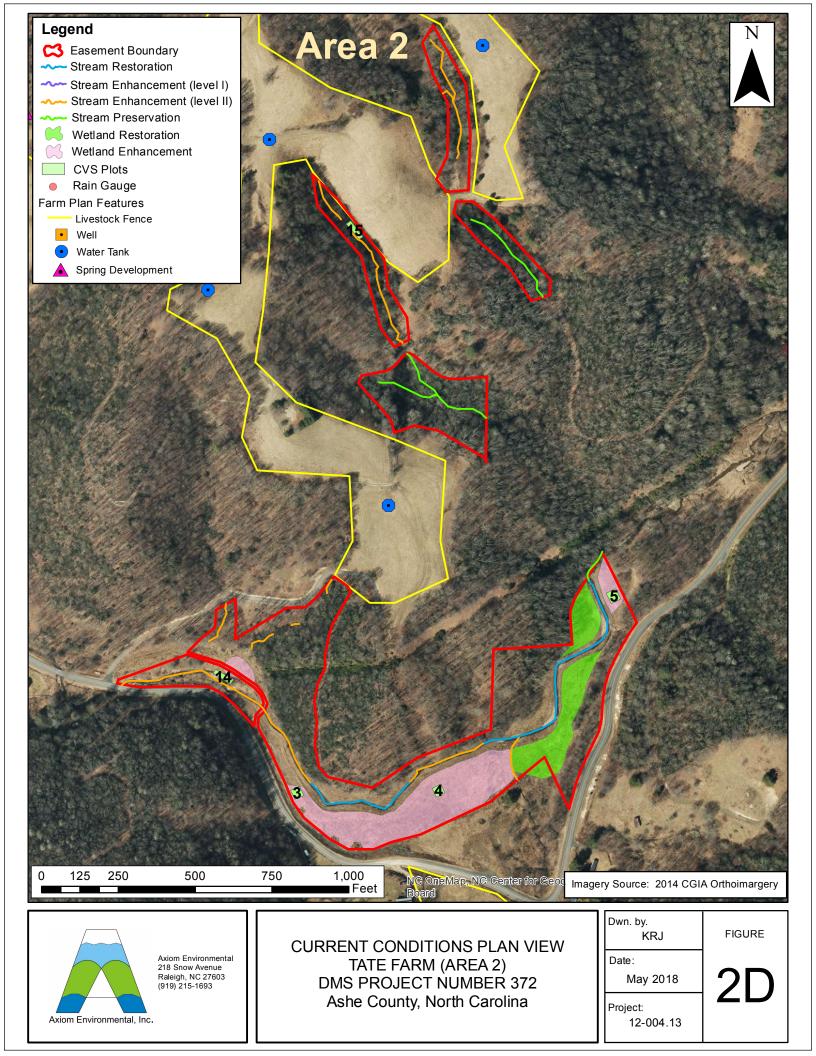

					2)			
	0							
· · · · · · · · · · · · · · · · · · ·		lien)						
-	1 234 847	7.66						
1,057,279.05	, 1,237,077	,00						
2007) Project Watershed Summary Information								
, v	Silea Suili	mary morm						
0	stalline Ri	does and Mou	intains					
		ages and whot	intanis					
	0050							
	5050							
~570								
Rural								
	Summary	Information						
	l l		Area 2	Area 3	Area 4			
· -	(01)	111Dutantes	1 Houtai its	1 i ibutai ies	1 induction in the second seco			
Í Í								
2300	912	2419	2166	4020	3367			
2.0	0.56	NA	NA	NA	NA			
Colvard and	Toxaway							
		d						
0.02	0.02							
NA	1							
Montane All	uvial Fores	t and Swamp	Forest-Bog C	Complex				
<5%	<5%	•	U	•				
Regula	atory Cons	siderations						
0	v							
	d Appropri	ate Permits						
Act No Effect								
No								
NA								
	Project Farm (R Ashe 61.92 1,037,279.65 Project Water Blue Ridge Southern Cry Upper New 05050001 05050001 05050001010 05-07-02 2.0 <5%	Project InforTate Farm (Ripshin BraAshe 61.92 $1,037,279.65, 1,234,847$ Project Watershed SumBlue RidgeSouthern Crystalline RidUpper New0505000105-07-022.0<5%	Project InformationTate Farm (Ripshin Branch)Ashe 61.92 $1,037,279.65, 1,234,847,66$ Project Watershed Summary InformBlue RidgeSouthern Crystalline Ridges and MouUpper New050500010505000101005005-07-022.0<5%	Project InformationTate Farm (Ripshin Branch)Ashe 61.92 $1,037,279.65, 1,234,847,66$ Project Watershed Summary InformationBlue RidgeSouthern Crystalline Ridges and MountainsUpper New0505000105050001005005-07-022.0<5%	Tate Farm (Ripshin Branch) Ashe 61.92 1,037,279.65, 1,234,847,66 Project Watershed Summary Information Blue Ridge Southern Crystalline Ridges and Mountains Upper New 05050001 0505000100050 05-07-02 2.0 <5%			

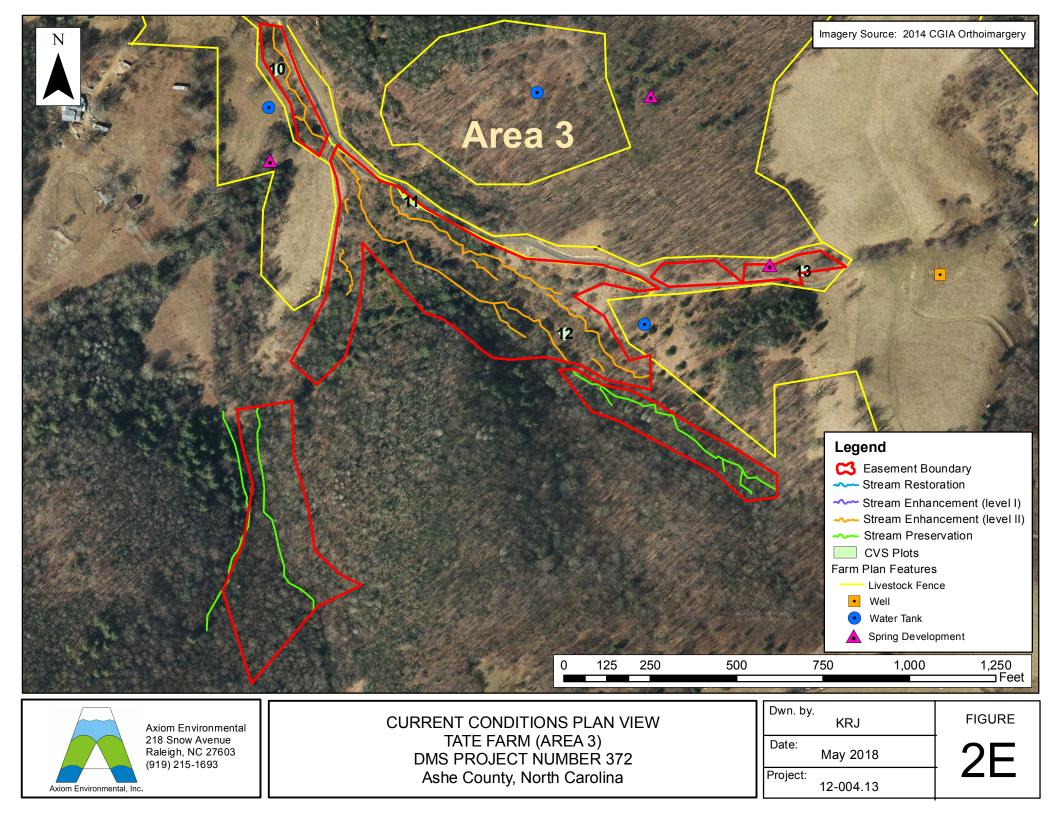
Table 4. Project Baseline Information and Attributes
Tate Farm (Ripshin Branch) Stream and Wetland Restoration Site (DMS Project Number 372)


APPENDIX B


VISUAL ASSESSMENT DATA


Figures 2 and 2A-2F. Current Conditions Plan ViewTables 5A-5B. Visual Stream Morphology Stability AssessmentTable 6. Vegetation Condition AssessmentStream Fixed-Station PhotographsVegetation Monitoring Photographs





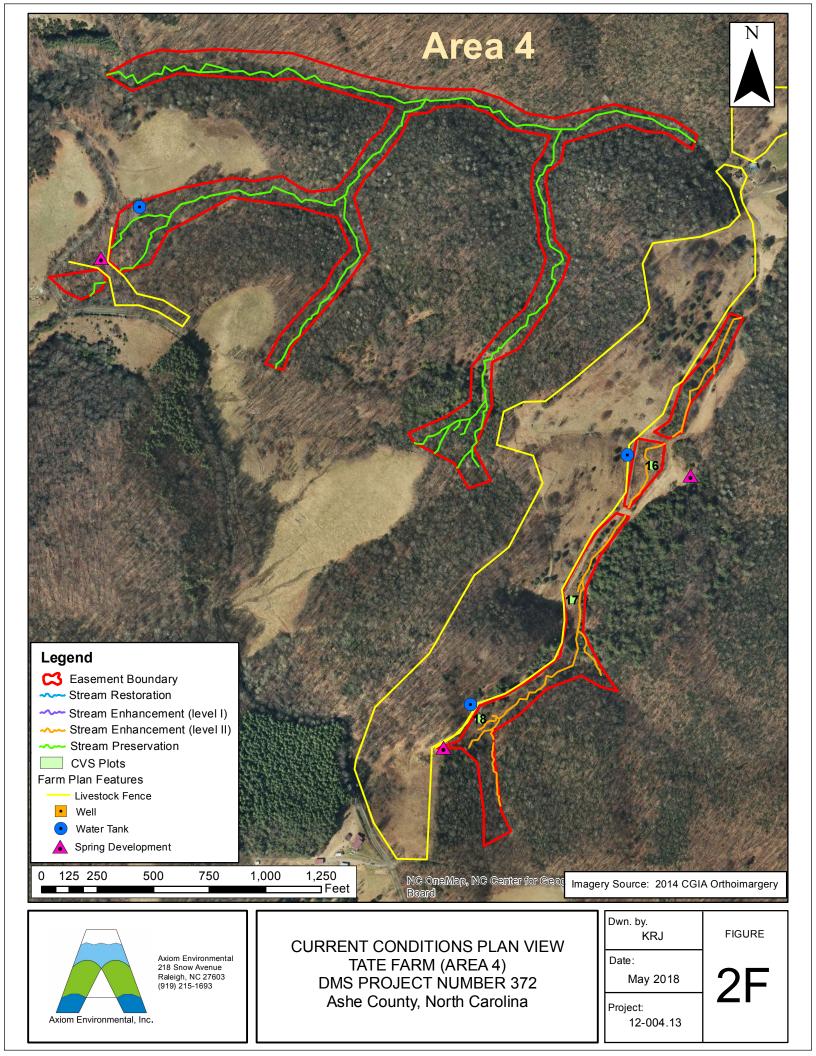


Table 5A

Visual Stream Morphology Stability Assessment

Reach ID Assessed Length Unnamed Tributary 800

	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	Number with Stabilizing Woody Vegetation	Footage with Stabilizing Woody Vegetation	Adjusted % for Stabilizing Woody Vegetation
	1. Vertical Stability (Riffle and Run units)	 <u>Aggradation</u> - Bar formation/growth sufficient to significantly deflect flow laterally (not to include point bars) 			0	0	100%			
		2. <u>Degradation</u> - Evidence of downcutting			0	0	100%			
	2. Riffle Condition	1. <u>Texture/Substrate</u> - Riffle maintains coarser substrate	12	12			100%			
1. Bed	3. Meander Pool Condition	1. <u>Depth</u> Sufficient (Max Pool Depth : Mean Bankfull Depth \geq 1.6)	10	10			100%			
		 Length appropriate (>30% of centerline distance between tail of upstream riffle and head of downstrem riffle) 	10	10			100%			
	4.Thalweg Position	1. Thalweg centering at upstream of meander bend (Run)	10	10			100%			
		2. Thalweg centering at downstream of meander (Glide)	10	10			100%			
	1. Scoured/Eroding	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion			0	0	100%			100%
2. Bank	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does <u>NOT</u> include undercuts that are modest, appear sustainable and are providing habitat.			0	0	100%			100%
	3. Mass Wasting	Bank slumping, calving, or collapse			0	0	100%			100%
				Totals	0	0	100%	0	0	100%
	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	4	4			100%			
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill.	8	8			100%			
3. Engineered Structures	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	4	4			100%			
	3. Bank Protection	Bank erosion within the structures extent of influence does <u>not</u> exceed 15%. (See guidance for this table in EEP monitoring guidance document)	4	4			100%			
	4. Habitat	Pool forming structures maintaining ~ Max Pool Depth : Mean Bankfull Depth ratio \geq 1.6 Rootwads/logs providing some cover at base-flow.	4	4			100%			

able 5B <u>Vi</u>

Visual Stream Morphology Stability Assessment

Reach ID Assessed Length Ripshin Branch 1444

Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	Number with Stabilizing Woody Vegetation	Footage with Stabilizing Woody Vegetation	Adjusted % for Stabilizing Woody Vegetation
	1. Vertical Stability (Riffle and Run units)	 <u>Aggradation</u> - Bar formation/growth sufficient to significantly deflect flow laterally (not to include point bars) 			0	0	100%			
		2. Degradation - Evidence of downcutting			0	0	100%			
	2. Riffle Condition	1. <u>Texture/Substrate</u> - Riffle maintains coarser substrate	21	21			100%			
1. Bed	3. Meander Pool Condition	1. <u>Depth</u> Sufficient (Max Pool Depth : Mean Bankfull Depth \ge 1.6)	25	25			100%			
		 Length appropriate (>30% of centerline distance between tail of upstream riffle and head of downstrem riffle) 	25	25			100%			
	4.Thalweg Position	1. Thalweg centering at upstream of meander bend (Run)	25	25			100%			
		2. Thalweg centering at downstream of meander (Glide)	25	25			100%			
	1. Scoured/Eroding	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion			0	0	100%			100%
2. Bank	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does <u>NOT</u> include undercuts that are modest, appear sustainable and are providing habitat.			0	0	100%			100%
	3. Mass Wasting	Bank slumping, calving, or collapse			0	0	100%			100%
				Totals	0	0	100%	0	0	100%
	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	8	8			100%			
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill.	0	0			NA			
3. Engineered Structures	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	8	8			100%			
	3. Bank Protection	Bank erosion within the structures extent of influence does <u>not</u> exceed 15%. (See guidance for this table in EEP monitoring guidance document)	8	8			100%			
	4. Habitat	Pool forming structures maintaining ~ Max Pool Depth : Mean Bankfull Depth ratio \geq 1.6 Rootwads/logs providing some cover at base-flow.	8	8			100%			

Table 5B

Table 6	Vegetation Condition Assessment
---------	---------------------------------

Planted Acreage	17.48					
Vegetation Category	Definitions	Mapping Threshold	CCPV Depiction	Number of Polygons	Combined Acreage	% of Planted Acreage
1. Bare Areas	Very limited cover of both woody and herbaceous material.	0.1 acres	NA	0	0.00	0.0%
2. Low Stem Density Areas	Woody stem densities clearly below target levels.	0.1 acres	NA	11	7.41	42.4%
			Total	11	7.41	42.4%
3. Areas of Poor Growth Rates or Vigor	Areas with woody stems of a size class that are obviously small given the monitoring year.	0.25 acres	NA	0	0.00	0.0%
	mulative Total	11	7.41	42.4%		

Easement Acreage ²	61.9					
Vegetation Category	Definitions	Mapping Threshold	CCPV Depiction	Number of Polygons	Combined Acreage	% of Easement Acreage
4. Invasive Areas of Concern ⁴	Areas or points (if too small to render as polygons at map scale).	100 SF	NA	0	0.00	0.0%
5. Easement Encroachment Areas ³	Areas or points (if too small to render as polygons at map scale).	none	NA	0	0.00	0.0%

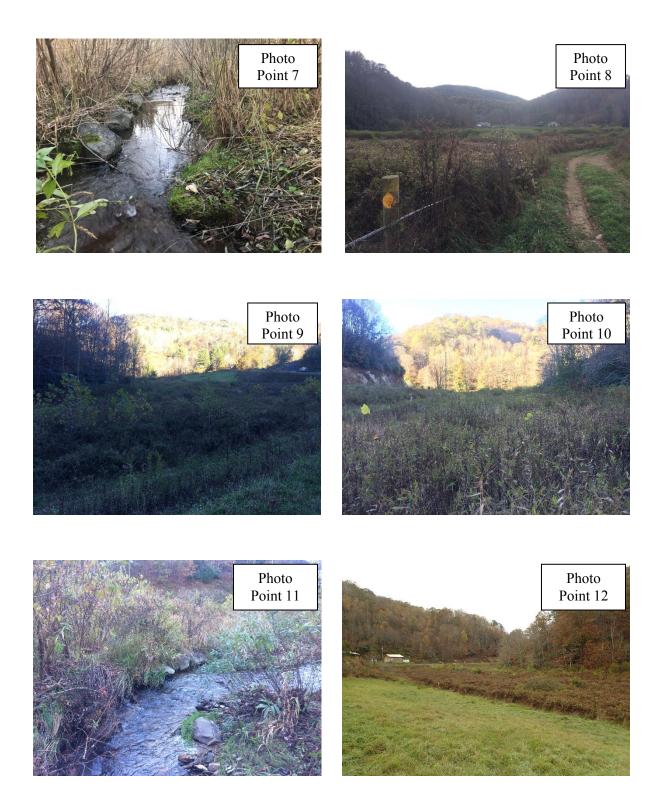
1 = Enter the planted acreage within the easement. This number is calculated as the easement acreage minus any existing mature tree stands that were not subject to supplemental planting of the understory, the channel acreage, crossings or any other elements not directly planted as part of the project effort.

2 = The acreage within the easement boundaries.

3 = Encroachment may occur within or outside of planted areas and will therefore be calculated against the overall easement acreage. In the event a polygon is cataloged into items 1, 2 or 3 in the table and is the result of encroachment, the associated acreage should be tallied in the relevant item (i.e., item 1,2 or 3) as well as a parallel tally in item 5.

A = Invasives may occur in or out of planted areas, but still within the easement and will therefore be calculated against the overall easement acreage. Invasives of concern/interest are listed below. The list of high concern spcies are those with the potential to directly outcompete native, young, woody stems in the short-ferm (e.g. monitoring period or shortly thereafter) or affect the community structure for existing, more established treeshrub stands over timeriames that are slightly longer (e.g., the low moderate concern forcern group are those species that generally do not have this capacity over the imfertances loss are done to the potential to directly outcompass, and the potential to directly outcompass, and the protocore of concern/interest are listed below. The list of high concern spcies are those with the decades. The low moderate concern forcer group are those species that generally do not have this capacity over the imfertances discussed and therefore are not expected to be mapped, it in the judget (e.g., the potential) will be needed are based on the integration of risk factors by DMS such as species greesent, their coverage, density or distribution is suppressing the viability of treatment. For example, even modest amounts of kudzu or Japanese (notweed are the set on the potential) water to control, but potential viage coverages of Microstreament terestrees are of integerst set well, but have yet to be observed across the state with any frequency. Those in red trailes are of particularly extensive amounts of cudular integers are on the integration of mapped with the easement acreage are those with the easement acreage are discussed and the potential impacts of treating extensive amounts of cudular integers are those with the treat areas of integers areas of the state areas are areas of the state with any frequency. These in red trailes are of particular treaters greet areas areas or insert tree situations where the inegration or an area is somewhere between isolated any frequency. These is r

Tate Farm (Ripshin Branch) Stream Fixed-Station Photographs Taken October 2017

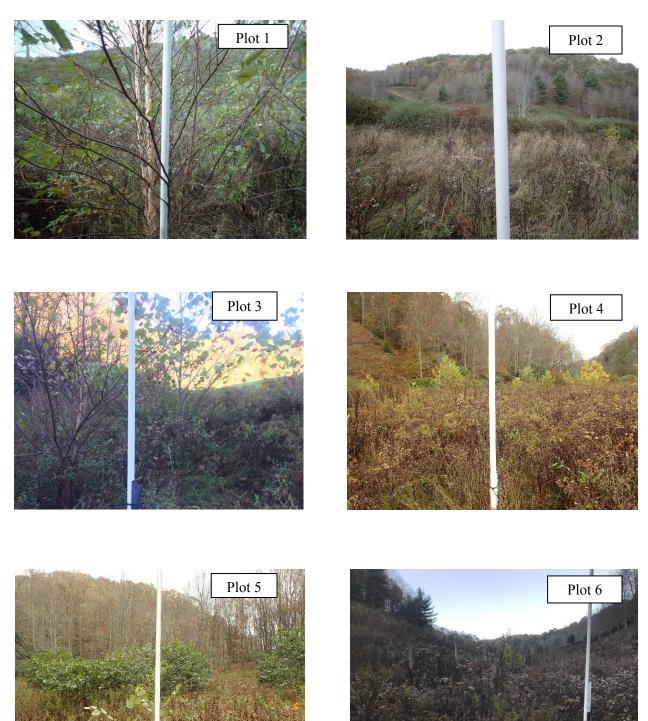


Axiom Environmental, Inc.

Tate Farm (Ripshin Branch) Stream Fixed-Station Photographs Taken October 2017 (continued)

Axiom Environmental, Inc.

Monitoring Year 6 of 6 (2017) May 2018 Appendices Tate Farm (Ripshin Branch) Stream Fixed-Station Photographs Taken October 2017 (continued)



Axiom Environmental, Inc.

Tate Farm (Ripshin Branch) Vegetation Monitoring Photographs Taken October 2017

Axiom Environmental, Inc.

Tate Farm (Ripshin Branch) Vegetation Monitoring Photographs Taken October 2017 (Continued)

Tate Farm (Ripshin Branch) Vegetation Monitoring Photographs Taken October 2017 (Continued)

APPENDIX C

VEGETATION PLOT DATA

Table 7. Vegetation Plot Criteria Attainment

Table 8. CVS Vegetation Plot Metadata

 Table 9. Total and Planted Stems by Plot and Species

Vegetation Plot ID	Vegetation Survival Threshold Met?	Tract Mean
1	Yes	
2	No	
3	Yes	
4	No	
5	Yes	
6	No	
7	No	
8	No	
9	Yes	220/
10	No	33%
11	Yes	
12	No*	
13	No	
14	Yes	
15	No	
16	No	
17	No	
18	No*	

 Table 7. Vegetation Plot Criteria Attainment Based on Planted Stems

 Tate Farm (Ripshin Branch) Stream and Wetland Restoration Site (DMS Project Number 372)

*When including natural recruits such as red maple (*Acer rubrum*), yellow buckeye (*Aesculus flava*), and great laurel (*Rhododendron maximum*) in plot 12 and striped maple (*Acer pensylvanicum*), yellow buckeye (*Aesculus flava*), yellow birch (*Betula alleghaniensis*), and tulip tree (*Liriodendron tulipifera*) in plot 18, these plots exceed success criteria.

Table 8. CVS Vegetation Plot Metadata

Tate Farm (Ripshin Branch) Stream and Wetland Restoration Site (DMS Project Number 372)

Report Prepared By	Corri Faquin
· · · ·	10/24/2017 12:30
Date Prepared	
database name	Axiom-Tate-2017-A-v2.3.1.mdb
database location	S:\Business\Projects\12\12-004 EEP Monitoring\12-004.13 Tate Farm\2017\CVS
computer name	PHILLIP-PC
file size	49528832
DESCRIPTION OF WORKSHEE	TS IN THIS DOCUMENT
Metadata	Description of database file, the report worksheets, and a summary of project(s) and project data.
Proj, planted	Each project is listed with its PLANTED stems per acre, for each year. This excludes live stakes.
	Each project is listed with its TOTAL stems per acre, for each year. This includes live stakes, all planted stems, and all
Proj, total stems	natural/volunteer stems.
Plots	List of plots surveyed with location and summary data (live stems, dead stems, missing, etc.).
Vigor	Frequency distribution of vigor classes for stems for all plots.
Vigor by Spp	Frequency distribution of vigor classes listed by species.
Damage	List of most frequent damage classes with number of occurrences and percent of total stems impacted by each.
Damage by Spp	Damage values tallied by type for each species.
Damage by Plot	Damage values tallied by type for each plot.
Planted Stems by Plot and Spp	A matrix of the count of PLANTED living stems of each species for each plot; dead and missing stems are excluded.
	A matrix of the count of total living stems of each species (planted and natural volunteers combined) for each plot; dead
ALL Stems by Plot and spp	and missing stems are excluded.
PROJECT SUMMARY	
Project Code	372
project Name	Tate Farm
Description	Stream and Wetland Restoration
River Basin	New
length(ft)	
stream-to-edge width (ft)	
area (sq m)	
Required Plots (calculated)	
Sampled Plots	18

Table 9. Total and Planted Stems by Plot and Species DMS Project Code 372. Project Name: Tate Farm

																	Curren	t Plot D	ata (M	Y6 2017)												
			37	372-01-0001		372-01-0002			372-01-00			2-01-0004	3	872-01-0	0005	3	72-01-0	006	37	72-01-0007		72-01-0008	372-01-			372-01-0010	372-01-0011			_	2-01-002	12
Scientific Name Common Name Species		Species Type	PnoLS	P-all T	Pno	oLS P-a	all T	I	PnoLS P-all	т	PnoLS	P-all T	PnoL	S P-all	Т	PnoL	6 P-all	т	PnoLS	P-all T	PnoL	S P-all T	PnoLS P-all	Т	Pnol	.S P-all T	PnoL	.S P-all	т	PnoLS F	P-all	т
Acer pensylvanicum	striped maple	Shrub Tree																														
Acer rubrum	red maple	Tree			3																				1							2
Acer saccharinum	silver maple	Tree																														
Aesculus flava	yellow buckeye	Tree																														2
Alnus	alder	Shrub																														
Alnus serrulata	hazel alder	Shrub												4	4	6																
Aronia arbutifolia	Red Chokeberry	Shrub				1	1	1						3	3	3												_				
Betula alleghaniensis	yellow birch	Tree																														
Betula lenta	sweet birch	Tree																										-	9	3		\neg
Betula nigra	river birch	Tree	3	3	3				1 1	1				2	2	2			1	1	1	1 1	1					-		1	1	1
Carpinus caroliniana	American hornbeam	Tree	_	_	-											-					-											
Carya	hickory	Tree														-					-											
Cornus amomum	silky dogwood	Shrub	1	1	1	1	1	1			2	2	2			-					-											
Corylus americana	American hazelnut	Shrub	-	-	-	-	-	-			-	-	-				1 .	1 1			-		1	1	1			+				
Crataegus	hawthorn	Tree											-	-		-	· ·				-			-	-			+		1		
Crataegus phaenopyrum	Washington hawthorn				-								-	_		-			-		-				-			2	2	2		
Fagus grandifolia	American beech	Tree														-					-				-			-	2 4	·		
Fragus granunona Fraxinus pennsylvanica			4		4	2	2	2	1 1	-	1	1	1	2	2	2		-	1	1	1				_		_			1		1
	green ash	Tree	4	4	4	2	2	2	4 4	5	1	1	1	2	Z .	2	-	-	1	. 1	1			_	_			<u> </u>				1
Ilex opaca	American holly	Tree			_	1	1	1						-	_	-	-	-	-		_		_		_		_			4		!
Kalmia	laurel				_								_			_					_				_					 _		
Kalmia latifolia	mountain laurel	Shrub Tree			_									_	_	-	-	-			_				_							1
Liriodendron tulipifera	tuliptree	Tree														_					_		3	3	3				4	1		/
Malus	apple	Tree																								1 1	1	_				
Pinus strobus	eastern white pine	Tree																							1			_	-	1		
Platanus occidentalis	American sycamore	Tree							6 6	6				2	2	2										2 2	2					
Prunus serotina	black cherry	Tree							1 1	1																						!
Quercus alba	white oak	Tree																														I
Quercus rubra	northern red oak	Tree																					1	1	1			1	1 :	L		I
Rhododendron	rhododendron																															
Rhododendron maximum	great laurel	Shrub																					1	1	1			4	4 20	5 Z	2	3
Rhus	sumac	shrub																										_				
Salix	willow	Shrub or Tree																														
Salix nigra	black willow	Tree																				1 1						-				
Salix sericea	silky willow	Shrub																				1 1						-				
Sambucus canadensis	Common Elderberry	Shrub													1	1		1	1									+			\rightarrow	
Tsuga canadensis	eastern hemlock	Tree																	1		-		3	3	3			+				1
Vaccinium corymbosum	highbush blueberry	Shrub															1 .	1 1			1		1	1	1		1	13 1	13 13	1		
Viburnum dentatum	southern arrowwood	Shrub	3	3	3								-					+ *			-			-	-			<u> </u>		1	\rightarrow	
	southern another of	Stem count	_	-	1/	5	5	5	12 12	13	3	3	2 1	3 1	3 1	5	, ,	2 2	2	2	2	1 1	1 10 1	10	2	2 2	2 2	20 2	20 50	5 4	4	11
			1	1	14	3	-	5	12 12	15	3	3	5 1		.5 1	<u>, </u>	<u>- 1</u>	<u>- </u>		1	۷		1 10 1			<u> </u>	<u> </u>		20 51	4	4	1
		size (ares)			_		1		-			1		1		_					-	1	-	.		1		1	2			
		size (ACRES)		0.02	_	1	.02		0.02			0.02	_	0.02	1		0.02		_	0.02	_	0.02	0.02			0.02	-	0.02	<u> </u>		0.02	
		Species count	4	4	5	4	4	4	4 4	4	2	2	~	5	5	5		2 2	2		2	1 1	-	6	0	2 2	2	4	4 225	3	3	
		Stems per ACRE	445.2	445.2 566	.6 20	2.3 20	12.3 20	J2.3	485.6 485.6	526.1	121.4	121.4 121		1 526.	1 60	/ 80.94	+ 80.94	4 80.94	80.94	80.94 80.	94 40.4	7 40.47 40.4	7 404.7 404	./ 485	.b 121	.4 121.4 121	.4 809.	4 809	.4 226	6 161.9	161.9	445.2

Color for Density

PnoLS = Planted excluding livestakes

P-all = Planting including livestakes

T = All planted and natural recruits including livestakes

Exceeds requirements by 10% Exceeds requirements, but by less than 10% Fails to meet requirements, by less than 10% Fails to meet requirements by more than 10%

T includes natural recruits

Table 9. Total and Planted Stems by Plot and Species (Continued) DMS Project Code 372. Project Name: Tate Farm

					Current Plot Data (MY6 2017) Annual Means																													
			37	72-01-00	13	37	2-01-00	14	372-01-0015		372-01-0016		372-01-0017		37	2-01-00	18	MY6 (201	17)	M	Y5 (201	6)	M	Y4 (201	5)	MY	3 (2014	4)	M	Y2 (201	3)	N	1Y1 (2012)	
Scientific Name	Common Name	Species Type	PnoLS	P-all	т	PnoLS	P-all	т	PnoLS	P-all T	PnoLS P-all	Т	PnoL	5 P-all T	PnoLS	P-all	Т	PnoLS P-all	т	PnoLS	P-all	т	PnoLS	P-all	т	PnoLS P	P-all	т	PnoLS	P-all	Т	PnoLS	P-all T	
Acer pensylvanicum	striped maple	Shrub Tree															4		4			2			3			1						3
Acer rubrum	red maple	Tree	1																6			2			4			10			17			12
Acer saccharinum	silver maple	Tree	1																						2									
Aesculus flava	yellow buckeye	Tree																	2			7						7						3
Alnus	alder	Shrub																					1	1	1	1	1	1				1	. 1	1
Alnus serrulata	hazel alder	Shrub																4 4	6	4	4	4	4	4	4	4	4	4	4	4	4	5	5	5
Aronia arbutifolia	Red Chokeberry	Shrub																4 4	4	3	3	4	4	4	4	5	5	5	5	5	5	5	5	5
Betula alleghaniensis	yellow birch	Tree																				1												
Betula lenta	sweet birch	Tree			1			1											11			10			18									3
Betula nigra	river birch	Tree				1	1	1					-					10 10	10	10	10	11	11	11	11	13	13	13	14	14	14	12	12	12
Carpinus caroliniana	American hornbeam	Tree																		1	1	1	1	1	1	1	1	30	1	1	1	1	. 1	33
Carya	hickory	Tree																							5			6						
Cornus amomum		Shrub									1	1	1		-			5 5	5	5	5	5	6	6	6	6	6	6	5	5	5	5	5	5
Corylus americana	1.0	Shrub				4	4	4				_			-			6 6	6	6	6	6	6	6	7	6	6	6	6	6	30	6	6	6
Crataegus	hawthorn	Tree					· · ·	6				_					1	0 0	7	Ű			Ű			Ĵ			1	1	3			
Crataegus phaenopyrum	Washington hawthorn					1	1	1		-	2	2	2				-	5 5	5	5	5	9	4	4	4	4	4	5	2	2	2	2	2	2
Fagus grandifolia	American beech	Tree				-	-	-				-	-						5	5	5	<u> </u>						9	_	-	2			
Fraxinus pennsylvanica	green ash	Tree										-				-	1	15 15	17	16	16	16	15	15	16	16	16	16	15	15	15	10	10	14
Ilex opaca	American holly	Tree				1	1	1				_			-		-	2 2	2	10	3	10	13	13	10	10	3	10	13	13	13	10	3	
Kalmia	laurel	iiee				-	-	1					-					2 2	2	5	5	J	J	5	J	5	J	J	5	5	15			
Kalmia latifolia		Shrub Tree				-			-				-						1			2						2			15	I		2
Liriodendron tulipifera	tuliptree	Tree				-			-				-				1	2 2	 0	2	2	12	2	2	14	2	2	11	3	2	4	2	2	16
Malus	apple	Tree								-		-	-		-		T	3 3 1 1	0) 1	5	12	5 1	5	14	1	2 1	11	1	3	4	1	1	10
Pinus strobus	eastern white pine	Tree							-			-			-			1 1	1	1	1	1	1	- 1	1	1		1	1	T		<u> </u>		1
Platanus occidentalis			2	2	2		-					-	-	1 1	1			13 13	12	14	14	14	14	14	14	15	15	15	14	14	2	14	14	14
	American sycamore	Tree	2		2	2	2	-			1	1	1	1 1	1			13 13	13	14	14	14	14	14	14	15	12	12	14	14	14	14	2 2	2
Prunus serotina	black cherry	Tree				2	2 1	5				1	L					4 4	1	3	3	3	3	3	3	4	4	4	3	3	3	3	3	1
Quercus alba	white oak	Tree				1	1	1				-	_		-				1	1	1	1	1	1	3	1	1	1	1	1		$\frac{1}{2}$		
Quercus rubra	northern red oak	Tree										_	-		_			2 2	2	2	2	2	2	2	2	2	2	2	1	1		2	2	
Rhododendron	rhododendron												_								-		2	2	2	2	2	2	2	2	9	1	1	4
Rhododendron maximum	0	Shrub	1	. 1	1								_	1 1	1			99	32	8	8	22	/	/	10	/	/	9	/	/	/	/	/	
Rhus		shrub										_	_																		⊢	 		1
Salix		Shrub or Tree																							6					-	<u> </u>	 		5
Salix nigra	black willow	Tree										1	1					1	1		1	13		1	1		1	1		2	2	 	1	1
Salix sericea	silky willow	Shrub										_	_															3			7	 		
Sambucus canadensis	1	Shrub				1	1	1							_			1 1	1	3	3	3	4	4	5	4	4	4	4	4	4	4	4	4
Tsuga canadensis	eastern hemlock	Tree						1										3 3	5	3	3	5	3	3	5	3	3	5	3	3	4	<u> </u>		1
Vaccinium corymbosum	highbush blueberry	Shrub	I										1	_ _				15 15	15	15	15	15	16		16	16	16	16	15	15	19	13		13
Viburnum dentatum	southern arrowwood	Shrub				6	-	6										99	9	9	9	9	10	10	10	-	10	10	9	9	9	9	, ,	9
		Stem count	: 3	3	4	17	17	28	0	0	0 4	5	5	2 2	2 0	0	7	112 113	183	115	116	183	121	122	183	127	128	210	119	121	203	108	109	192
		size (ares)		1			1			1	1			1		1		18			18			18			18			18]		18	
		size (ACRES)		0.02			0.02			0.02	0.02	2		0.02		0.02		0.44			0.44			0.44			0.44			0.44			0.44	
		Species count	2		3	8	0		0	0	3	4	4	2 2	2 0	0	4	19 20		20		27	22		30	22	23	31	22	23		21		31
	9	Stems per ACRE	121.4	121.4	161.9	688	688	1133	0	0 (0 161.9 202	.3 202.	3 80.9	4 80.94 80.9	4 0	0	283.3	251.8 254.1	411.4	258.5	260.8	411.4	272	274.3	411.4	285.5	287.8	472.1	267.5	272	456.4	242.8	245.1 43	31.7

Color for Density

PnoLS = Planted excluding livestakes

P-all = Planting including livestakes

T = All planted and natural recruits including livestakes

Exceeds requirements by 10% Exceeds requirements, but by less than 10% Fails to meet requirements, by less than 10% Fails to meet requirements by more than 10%

T includes natural recruits

APPENDIX D

STREAM SURVEY DATA (2016)

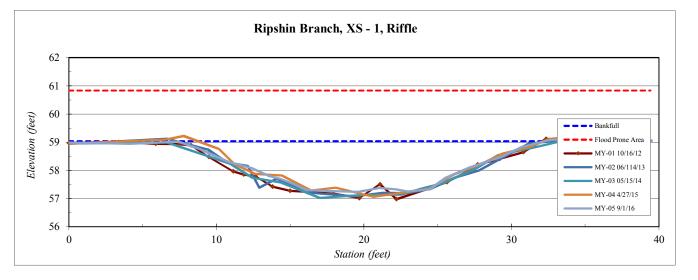
Cross-section Plots

Longitudinal Profile Plots

Substrate Plots

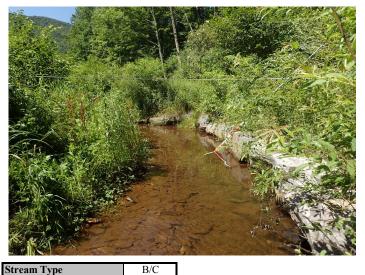
Tables 10a-d. Baseline Stream Data Summary

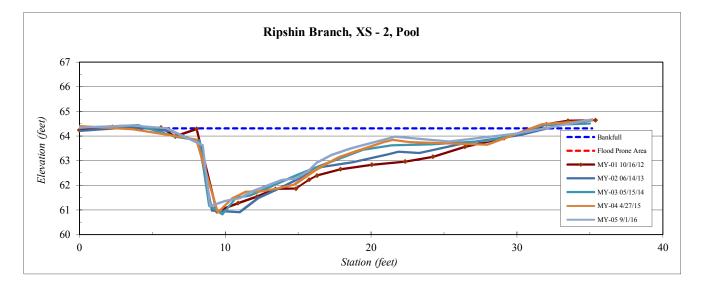
Tables 11a-d. Monitoring Data


River Basin:	Upper New	
Watershed:	Tate Farm	
XS ID	XS - 1, Riffle	
Drainage Area (sq mi):	1.6	
Date:	9/1/2016	
Field Crew:	Perkinson, Keith	

Station	Elevation
0.00	58.99
4.15	58.94
7.38	59.03
8.81	58.77
10.84	58.29
12.33	58.09
13.59	57.79
14.28	57.70
15.15	57.53
16.13	57.29
17.96	57.26
19.61	57.24
21.04	57.37
22.14	57.32
22.96	57.25
24.48	57.33
25.54	57.73
27.15	58.10
29.34	58.49
30.70	58.82
32.47	59.07
35.96	59.22
39.43	59.05

SUMMARY DATA	
Bankfull Elevation:	59.0
Bankfull Cross-Sectional Area:	27.7
Bankfull Width:	24.8
Flood Prone Area Elevation:	60.8
Flood Prone Width:	80.0
Max Depth at Bankfull:	1.8
Mean Depth at Bankfull:	1.1
W / D Ratio:	22.2
Entrenchment Ratio:	3.2
Bank Height Ratio:	1.0

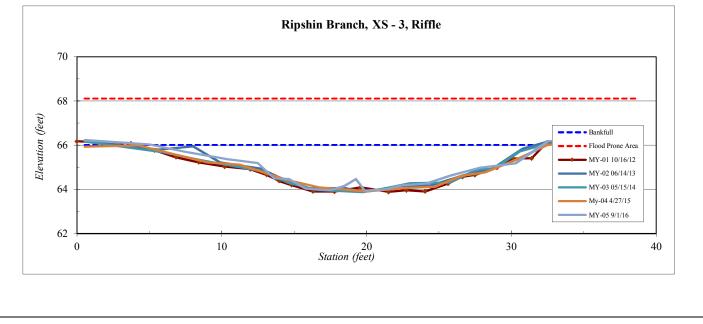

Stream Type B/C


River Basin:	Upper New
Watershed:	Tate Farm
XS ID	XS - 2, Pool
Drainage Area (sq mi):	1.6
Date:	9/1/2016
Field Crew:	Perkinson, Keith

Station	Elevation
0.00	64.34
3.61	64.43
5.99	64.31
8.45	63.62
8.95	61.15
9.99	61.37
11.00	61.47
11.83	61.75
13.90	62.21
14.81	62.27
15.67	62.57
16.25	62.91
17.29	63.23
18.66	63.50
21.63	63.98
25.3	63.78
30.1	64.11
35.2	64.67

SUMMARY DATA	
Bankfull Elevation:	64.3
Bankfull Cross-Sectional Area:	27.2
Bankfull Width:	25.9
Flood Prone Area Elevation:	-
Flood Prone Width:	-
Max Depth at Bankfull:	3.2
Mean Depth at Bankfull:	1.1
W / D Ratio:	-
Entrenchment Ratio:	-
Bank Height Ratio:	-

Stream Type


River Basin:	Upper New	
Watershed:	Tate Farm	
XS ID	XS - 3, Riffle	
Drainage Area (sq mi):	1.6	
Date:	9/1/2016	
Field Crew:	Perkinson, Keith	

Station	Elevation	
0.54	66.23	
5.02	66.04	
7.49	65.70	
10.39	65.37	
12.49	65.20	
13.61	64.50	
14.62	64.47	
15.81	64.04	
17.47	63.97	
18.46	64.15	
19.27	64.48	
19.90	63.94	
21.31	64.00	
22.40	64.19	
24.1	64.26	
25.8	64.62	
27.8	64.98	
30.3	65.19	
32.5	66.18	
36.2	66.21	
38.6	66.20	

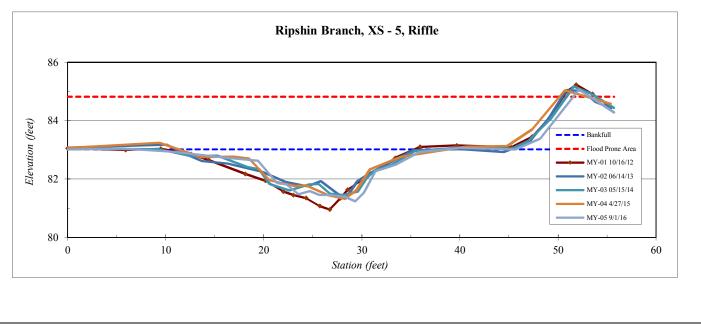
SUMMARY DATA	
Bankfull Elevation:	66.0
Bankfull Cross-Sectional Area:	32.1
Bankfull Width:	26.9
Flood Prone Area Elevation:	68.1
Flood Prone Width:	>80
Max Depth at Bankfull:	2.1
Mean Depth at Bankfull:	1.2
W / D Ratio:	22.5
Entrenchment Ratio:	3.0
Bank Height Ratio:	1.0

Stream Type B/C

River Basin:	Upper New
Watershed:	Tate Farm
XS ID	XS - 4, Riffle
Drainage Area (sq mi):	1.6
Date:	9/1/2016
Field Crew:	Perkinson, Keith

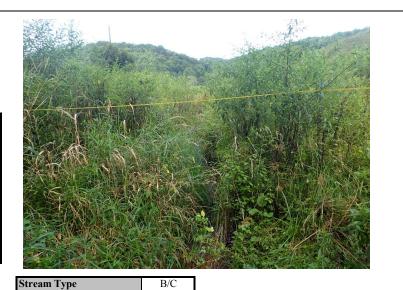
Station	Elevation	
0.00	77.63	ĺ
6.54	77.80	
10.64	77.75	
12.35	77.52	
14.27	77.16	
15.50	76.80	
16.38	76.64	
16.84	76.41	
18.65	76.20	
20.31	76.28	
21.32	76.08	
21.98	76.12	
22.58	76.35	
23.47	75.72	
24.0	75.66	
24.6	75.65	
25.2	76.17	
26.0	76.23	
27.2	76.59	
28.2	76.76	
29.9	77.06	
33.6	77.68	
36.1	77.85	
39.3	77.84	
42.9	77.67	

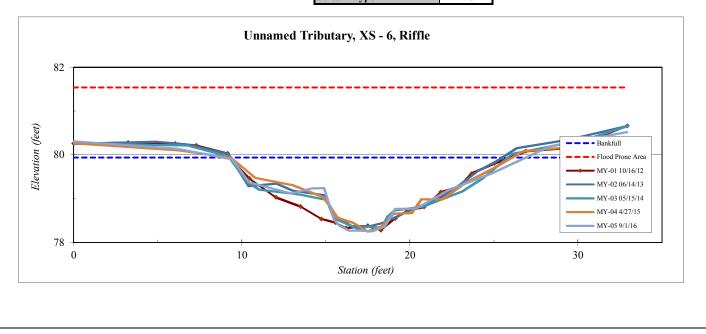
SUMMARY DATA	
Bankfull Elevation:	77.8
Bankfull Cross-Sectional Area:	24.6
Bankfull Width:	24.5
Flood Prone Area Elevation:	79.9
Flood Prone Width:	>80
Max Depth at Bankfull:	2.1
Mean Depth at Bankfull:	1.1
W / D Ratio:	22.3
Entrenchment Ratio:	3.3
Bank Height Ratio:	1.0


Ripshin Branch, XS - 4, Riffle 82 80 Elevation (feet) 🗕 🕳 🗕 🖷 Bankfull 78 Flood Prone Area MY-01 10/16/12 MY-02 06/14/13 76 MY-03 05/15/14 MY-04 4/27/15 MY-05 9/1/16 74 10 20 Station (feet) 30 40 0

River Basin:	Upper New	
Watershed:	Tate Farm	
XS ID	XS - 5, Riffle	
Drainage Area (sq mi):	1.6	
Date:	9/1/2016	
Field Crew:	Perkinson, Keith	

Station	Elevation	
0.0	83.0	
5.6	83.0	
10.8	82.9	
15.6	82.7	
19.4	82.6	
21.4	81.9	
22.3	81.8	
23.6	81.5	
24.7	81.6	
25.7	81.5	
26.8	81.5	
28.3	81.4	
29.3	81.2	
30.2	81.53	
31.4	82.27	
33.5	82.49	
35.8	82.93	
40.0	83.07	
45.6	83.02	
48.2	83.39	
52.1	85.07	
55.7	84.29	


SUMMARY DATA	
Bankfull Elevation:	83.0
Bankfull Cross-Sectional Area:	20.6
Bankfull Width:	31.9
Flood Prone Area Elevation:	84.8
Flood Prone Width:	>80
Max Depth at Bankfull:	1.8
Mean Depth at Bankfull:	0.6
W / D Ratio:	49.4
Entrenchment Ratio:	2.5
Bank Height Ratio:	1.0



River Basin:	Upper New	
Watershed:	Tate Farm	
XS ID	XS - 6, Riffle	
Drainage Area (sq mi):	0.6	
Date:	9/1/2016	
Field Crew:	Perkinson, Keith	

SUMMARY DATA	
Bankfull Elevation:	79.9
Bankfull Cross-Sectional Area:	14.3
Bankfull Width:	17.2
Flood Prone Area Elevation:	81.5
Flood Prone Width:	>80
Max Depth at Bankfull:	1.6
Mean Depth at Bankfull:	0.8
W / D Ratio:	20.7
Entrenchment Ratio:	4.7
Bank Height Ratio:	1.0

9.4 79.9 10.4 79.4 12.9 79.1 14.2 79.2 14.9 79.2 15.5 78.5 15.8 78.4 16.4 78.3 17.0 78.3 17.8 78.3 18.5 78.4 19.1 78.77 20.4 78.77 22.3 79.20 24.9 79.58 80.20 28.3 32.9 80.52

Station

0.0

6.2

Elevation

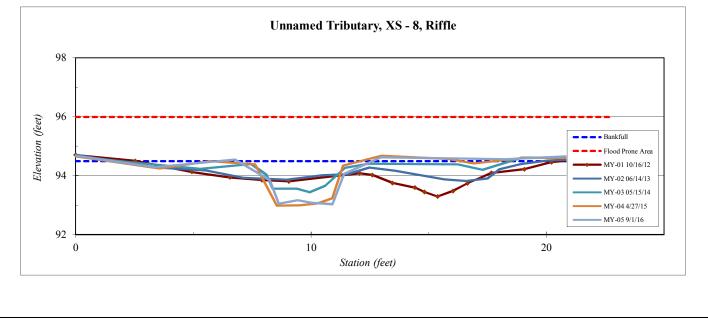
80.3

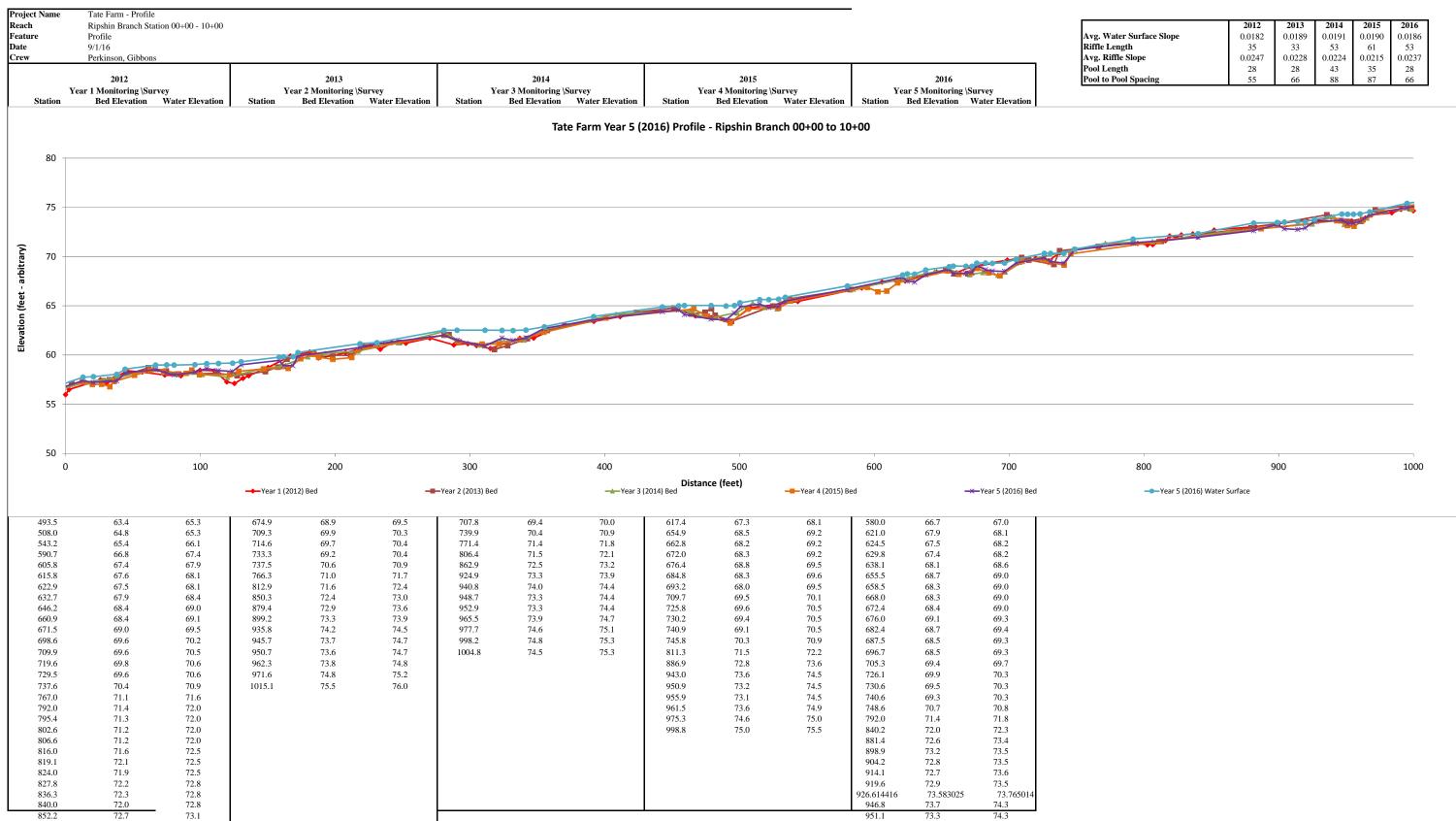
80.1

River Basin:	Upper New	
Watershed:	Tate Farm	
XS ID	XS - 7, Pool	
Drainage Area (sq mi):	0.6	
Date:	9/1/2016	
Field Crew:	Perkinson, Keith	

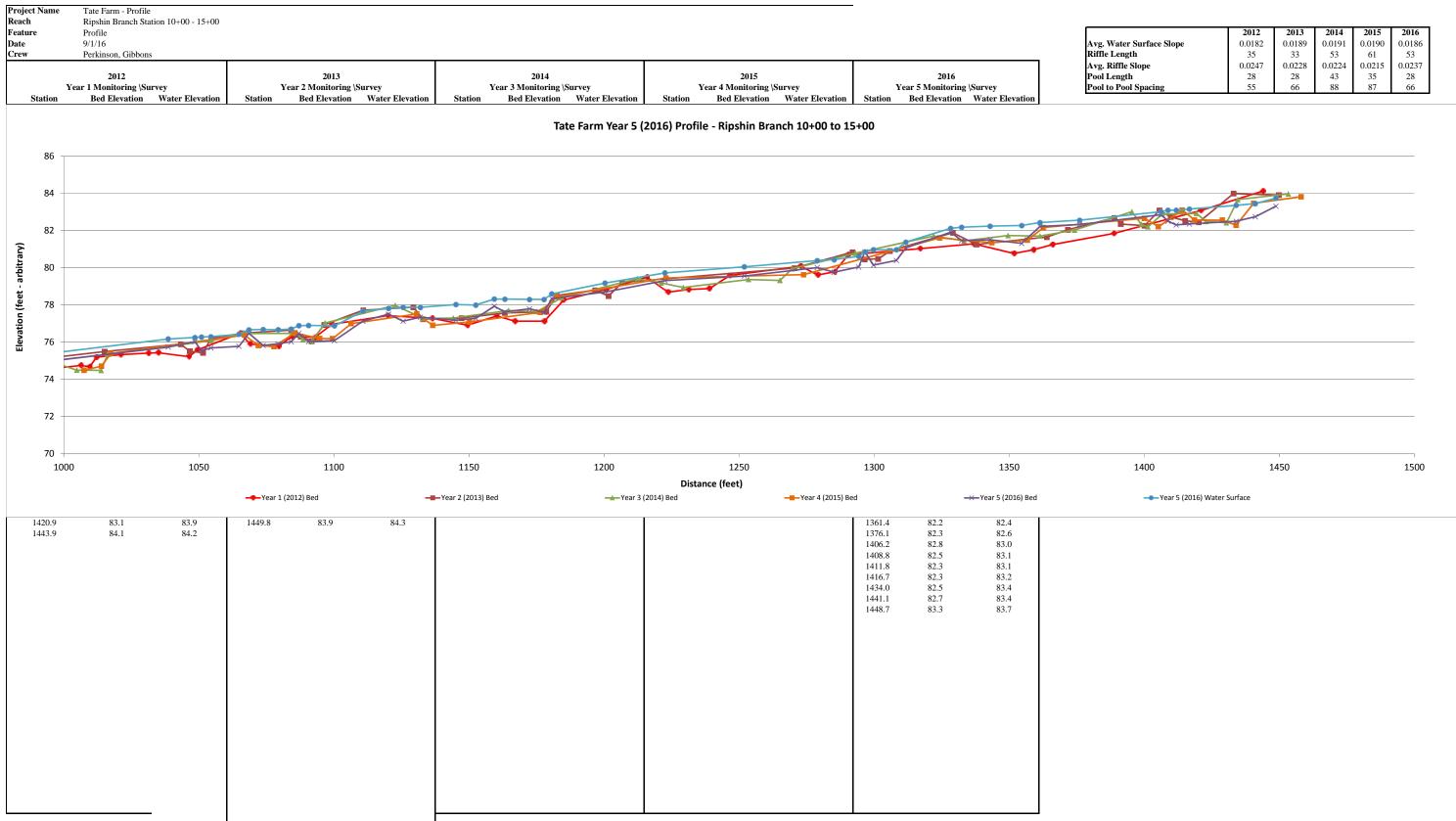
Station	Elevation	
0.0	87.7	
4.1	87.7	
5.2	87.1	
5.6	85.8	
6.2	85.5	
6.9	86.0	
7.7	85.9	
8.1	86.1	
8.5	86.3	
9.2	86.7	
9.8	87.2	
11.4	87.4	
16.0	87.6	
21.9	87.39	
23.6	87.53	

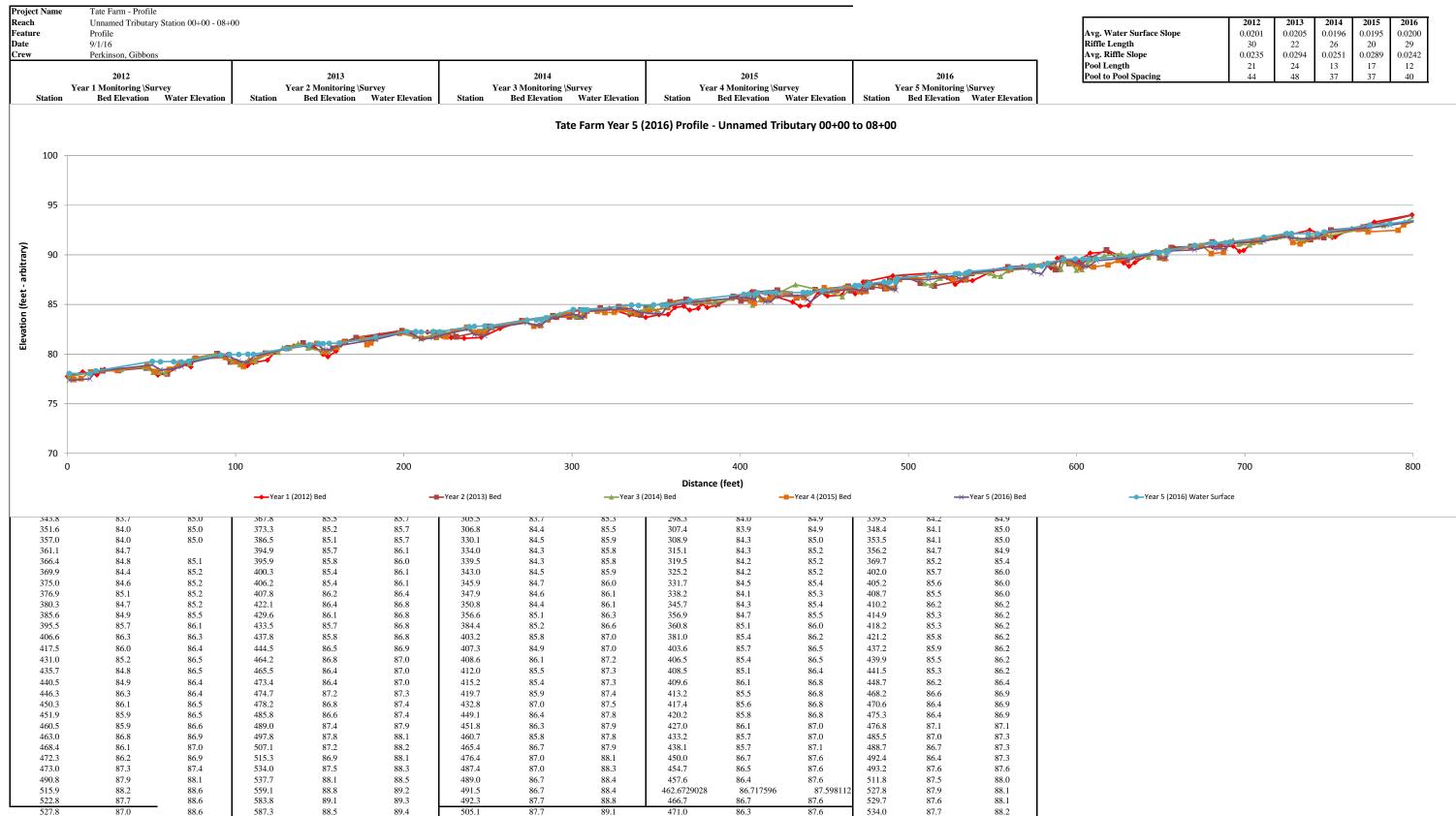
SUMMARY DATA	
Bankfull Elevation:	87.4
Bankfull Cross-Sectional Area:	6.2
Bankfull Width:	9.3
Flood Prone Area Elevation:	-
Flood Prone Width:	-
Max Depth at Bankfull:	2.0
Mean Depth at Bankfull:	0.7
W / D Ratio:	-
Entrenchment Ratio:	-
Bank Height Ratio:	-

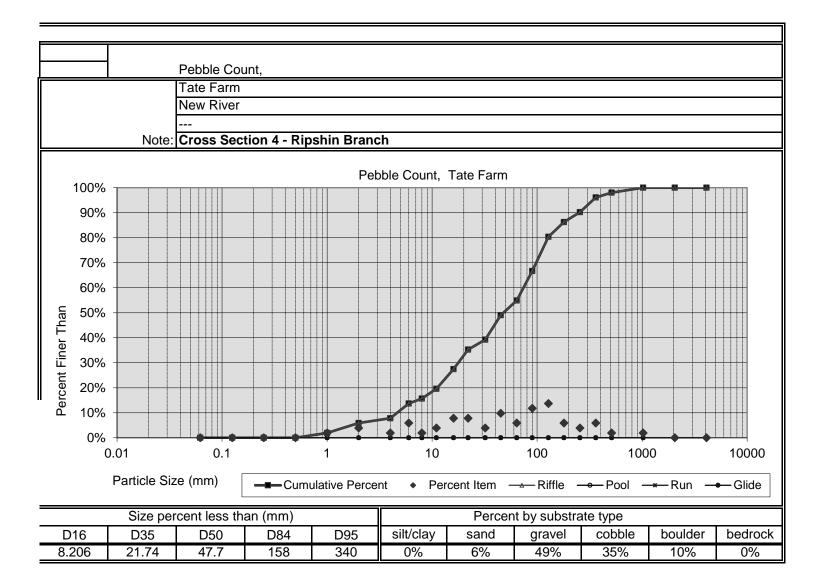

Unnamed Tributary, XS - 7, Pool 88 Elevation (feet) 🗕 🗕 🗕 🖷 Bankfull 86 - - Flood Prone Area MY-01 8/18/09 MY-02 06/14/13 MY03 05/15/14 MY-04 4/27/15 MY-05 9/1/16 84 20 10 0 Station (feet)

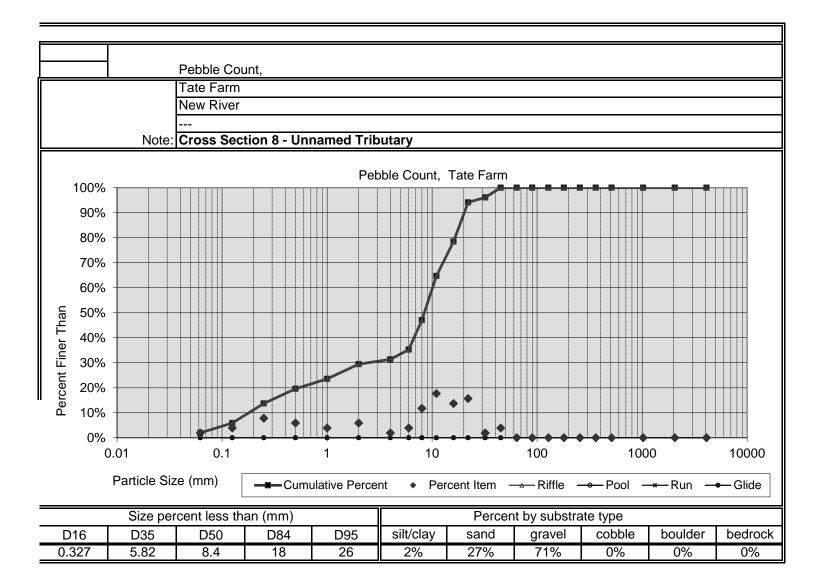

River Basin:	Upper New	
Watershed:	Tate Farm	
XS ID	XS - 8, Riffle	
Drainage Area (sq mi):	0.6	
Date:	9/1/2016	
Field Crew:	Perkinson, Keith	

Station	Elevation	
0.0	94.7	
3.4	94.3	
6.8	94.5	
8.2	93.9	
8.6	93.1	
9.4	93.2	
10.0	93.1	
10.9	93.0	
11.4	94.1	
13.0	94.6	
18.3	94.6	
21.1	94.7	
22.7	94.7	


SUMMARY DATA	
Bankfull Elevation:	94.5
Bankfull Cross-Sectional Area:	4.7
Bankfull Width:	5.7
Flood Prone Area Elevation:	96.0
Flood Prone Width:	>80
Max Depth at Bankfull:	1.5
Mean Depth at Bankfull:	0.8
W / D Ratio:	6.9
Entrenchment Ratio:	14.0
Bank Height Ratio:	1.0




	2012	2013	2014	2015	2016
. Water Surface Slope	0.0182	0.0189	0.0191	0.0190	0.0186
le Length	35	33	53	61	53
. Riffle Slope	0.0247	0.0228	0.0224	0.0215	0.0237
Length	28	28	43	35	28
to Pool Spacing	55	66	88	87	66
. Riffle Slope Length	0.0247 28	0.0228 28	0.0224 43	0.0215 35	0.023 28



	2012	2013	2014	2015	2016	l
Water Surface Slope	0.0182	0.0189	0.0191	0.0190	0.0186	l
e Length	35	33	53	61	53	1
Riffle Slope	0.0247	0.0228	0.0224	0.0215	0.0237	l
Length	28	28	43	35	28	1
to Pool Spacing	55	66	88	87	66	l

	2012	2013	2014	2015	2016
. Water Surface Slope	0.0201	0.0205	0.0196	0.0195	0.0200
le Length	30	22	26	20	29
. Riffle Slope	0.0235	0.0294	0.0251	0.0289	0.0242
Length	21	24	13	17	12
to Pool Spacing	44	48	37	37	40
8				17 37	

Table 10a. Baseline Stream Data Summary (Ripshin Branch)Tate Farm (Ripshin Branch) - DMS Project Number 372

Parameter	Gauge]	Regional C	urve		Pre-Exi	sting C	onditior	1		Reference	Reach(es) Data			Design			Monit	oring Ba	aseline	
Dimension and Substrate - Riffle Only		LL	UL	Eq.	Min	Mean	Med	Max	SD	Min	Mean	Med	Max	SD	Min	Max	Med	Min	Mean	Med	Max	SD
BF Width (ft)					21.0			24.0		14.4			17.1		23.0	25.0						
Floodprone Width (ft)					35			60		27			95		25	80						
BF Mean Depth (ft)					1.2			1.3		1.2			1.3		1.3	1.4						
BF Max Depth (ft)							1.9			1.7			1.9		2.7	2.9						
BF Cross Sectional Area (ft ²)					26.0			29.0		17.6			20.7		30.0	35.0						
Width/Depth Ratio					18.5			21.0		11.8			13.2		17.0	18.0						1
Entrenchment Ratio					1.9			2.6		1.6			6.6		1.5	2.0						1
Bank Height Ratio							1.8					1.2			1.0	1.2						1
Profile		<u> </u>			•				•	•	1		•						1		•	<u> </u>
Riffle length (ft)												1								1	1	
Riffle slope (ft/ft)					1		0.0040			0.0170		1	0.0420				0.0400					<u> </u>
Pool length (ft)					9.0			43.0	İ	11.0		1	18.7		20.0	70.0			1	1	1	t
Pool Max depth (ft)							3.6			0.9			2.6		3.5	3.6						1
Pool spacing (ft)					33.0			253.0		25.7			69.3		80.0	130.0						1
Pattern		<u> </u>			•				•	•	1	1	•						1		•	<u> </u>
Channel Beltwidth (ft)					7			80		20		1	41.7		29	150				1		T
Radius of Curvature (ft)					10			160		25.3			185		55	135						1
Rc:Bankfull width (ft/ft)					0.4			1		1.8			5.9		3	4.2						1
Meander Wavelength (ft)					30			240		97.5			140		85	365						
Meander Width ratio					0.8			2.1		6.8			8		4.4	6.6						
Transport parameters																						
Reach Shear Stress (competency) lbs/ft ²												1										
Max part size (mm) mobilized at bankfull																						<u> </u>
Stream Power (transport capacity) W/m^2																						<u> </u>
Additional Reach Parameters									1										1			L
Rosgen Classification					1	1	34/F4/C	1		I	1	B4/C4				B4/C4						
Bankfull Velocity (fps)				[1	5.5	7			1	D4/C4				4.8 - 5						
Bankfull Discharge (cfs)							158									4.0 - 5						
Valley Length (ft)																						_
Channel Thalweg Length (ft)					1											2300						
Sinuosity					1		1.2				1	.1 - 1.2				1.1 - 1.3						
Water Surface Slope (ft/ft)						0	018-0.0	24				12 - 0.01	9			0.02						
BF slope (ft/ft)					1	0.					5.01		· ~									
Bankfull Floodplain Area (acres)																						
% of Reach with Eroding Banks																						
Channel Stability or Habitat Metric																						
Biological or Other																						

Table 10b. Baseline Stream Data Summary (Substrate, Bed, Bank, and Hydrologic Containment Parameter Distributions)

Tate Farm (Ripshin Branch) - DMS Project Number 372 - Ripshin Branch

Parameter	Pre-Exist	ing Conditi	on			Referen	ce Reach(e	es) Data			Design			Mo	onitor	ing Bas	eline	
Ri%/RU%P%G%/S%																		
SC%/SA%/G%/C%/B%BE%																		
d16/d35/d50/d84/d95	0.2-0.3	4.0-12.0				0.5	3.0-5.0											
Entrainment Class <1.5/1.5-1.99/2.0-4.9/5.0-																		
Incision Class <1.2/1.2-1.49/1.5-1.99/>2.0																		

Table 10c. Baseline Stream Data Summary (Unnamed Tributary)Tate Farm (Ripshin Branch) - DMS Project Number 372

Parameter	Gauge]	Regional C	urve		Pre-Exi	isting Co	ondition	l		Reference	e Reach(e	es) Data			Design			Monit	oring Ba	seline	
Dimension and Substrate - Riffle Only		LL	UL	Eq.	Min	Mean		Max	SD	Min	Mean	Med	Max	SD	Min	Max	Med	Min	Mean	Med	Max	SD
BF Width (ft)							18.0					14.4					16.0					
Floodprone Width (ft)							28					95			16	80	50					
BF Mean Depth (ft)							0.9					1.2					0.9					
BF Max Depth (ft)							1.4					1.7			1.3	1.4						
BF Cross Sectional Area (ft ²)							16.3					17.6					14.0					
Width/Depth Ratio							21.8					11.8					18.0					
Entrenchment Ratio							1.6					6.6			1.0	2.5						
Bank Height Ratio							2.3					1.2					1.0					
Profile			•	•				•					•						-			
Riffle length (ft)					I							1										
Riffle slope (ft/ft)							0.0400					0.0170					0.0400					
Pool length (ft)					3.6			19.9				18.7					25.0					
Pool Max depth (ft)							1.4					2.6					1.9					
Pool spacing (ft)					11.0		80.0					69.0			50.0	90.0	60.0					
Pattern			•	•				•					•						-			
Channel Beltwidth (ft)					12			33				41.7			35	100						
Radius of Curvature (ft)					2.5			25				25.3			40	200						
Rc:Bankfull width (ft/ft)							0.8					1.8			3.4	14						
Meander Wavelength (ft)					50			170				97.5			120	160						
Meander Width ratio							4.9					2.9			8.3	8.8						
Transport parameters																						
Reach Shear Stress (competency) lbs/ft ²																						
Max part size (mm) mobilized at bankfull																						
Stream Power (transport capacity) W/m ²																						
Additional Reach Parameters																						
Rosgen Classification							B4/F4					C4				B4/C4						
Bankfull Velocity (fps)							5.1									4.5						
Bankfull Discharge (cfs)							83.07															
Valley Length (ft)																						
Channel Thalweg Length (ft)																912						
Sinuosity							1.2					1.2				1.0-1.2						
Water Surface Slope (ft/ft)							0.02					0.012				0.02						
BF slope (ft/ft)																						
Bankfull Floodplain Area (acres)																						
% of Reach with Eroding Banks																						
Channel Stability or Habitat Metric																						
Biological or Other																						

Table 10d. Baseline Stream Data Summary (Substrate, Bed, Bank, and Hydrologic Containment Parameter Distributions)

Tate Farm (Ripshin Branch) - DMS Project Number 372 - Unnamed Tributary

Parameter		Pre-Exist	ing Conditi	on				Referen	nce Reach	es) Data			Design			Mor	nitoring	g Basel	ine	
Ri%/RU%P%G%/S%																				
SC%/SA%/G%/C%/B%BE%																				
d16/d35/d50/d84/d95	4.8	12.8	44.2	78.5		8.0	11.8	18.4	73.0	100.0										
Entrainment Class <1.5/1.5-1.99/2.0-4.9/5.0-																				
Incision Class <1.2/1.2-1.49/1.5-1.99/>2.0																				

Table 11a. Monitoring Data - Dimensional Morphology Summary (Dimensional Parameters - Cross Sections) Tate Farm (Ripshin Branch) - DMS Project Number 372 - Ripshin Branch

			Ci	ross Secti	on 1					C	oss Sectio	on 2					Cı	oss Sectio	n 3					Ci	oss Sectio	on 4					Cr	oss Sectio	m 5		
Parameter				Riffle							Pool							Riffle							Riffle							Riffle			
Dimension	MY0	MY1	MY2	MY3	MY4	MY5	MY5+	MY0	MY1	MY2	MY3	MY4	MY5	MY5+	MY0	MY1	MY2	MY3	MY4	MY5	MY5+	MY0	MY1	MY2	MY3	MY4	MY5	MY5+	MY0	MY1	MY2	MY3	MY4	MY5	MY5-
BF Width (ft)		23.4	23.3	25.8	24.3	24.8			23.2	25.0	25.3	26.0	27.2			28.1	23.3	28.7	28.2	26.9			21.4	23.3	22.0	23.8	24.6			21.7	24.0	25.3	31.0	31.9	
Floodprone Width (ft) (approx)		80.0	80.0	80.0	80.0	80.0			NA	NA	NA	NA	NA			80.0	80.0	80.0	80.0	80.0			80.0	80.0	80.0	80.0	80.0			80.0	80.0	80.0	80.0	80.0	
BF Mean Depth (ft)		1.2	1.2	1.1	1.2	1.1			1.6	1.3	1.1	1.1	1.0			1.3	1.3	1.2	1.3	1.2			1.1	0.9	1.1	1.1	1.0			0.9	0.8	0.7	0.7	0.6	
BF Max Depth (ft)		1.9	1.9	1.9	2.0	1.8			3.4	3.3	3.4	3.3	3.2			2.1	2.0	2.1	2.1	2.1			2.0	1.8	1.8	2.0	2.1			1.9	1.7	1.5	1.8	1.8	
BF Cross Sectional Area (ft ²)		27.6	27.9	28.8	29.0	27.7			36.1	32.2	28.1	27.7	27.2			37.4	30.7	33.2	35.5	32.1			23.5	21.0	24.4	25.3	24.6			19.2	18.0	18.3	21.7	20.6	
Width/Depth Ratio		19.8	19.5	23.1	20.4	22.2			NA	NA	NA	NA	NA			21.1	17.7	24.8	22.4	22.5			19.5	25.9	19.8	21.6	24.6			24.5	32.0	35.0	44.3	49.4	
Entrenchment Ratio		3.4	3.4	3.1	3.3	3.2			NA	NA	NA	NA	NA			2.8	3.4	2.8	2.8	3.0			3.7	3.4	3.6	3.4	3.3			3.7	3.3	3.2	2.6	2.5	
Bank Height Ratio		1.0	1.0	1.0	1.0	1.0			1.0	1.0	1.0	1.0	1.0			1.0	1.0	1.0	1.0	1.0			1.0	1.0	1.0	1.0	1.0			1.0	1.0	1.0	1.0	1.0	
d50 (mm)																							79.2	81.6	80.3	56.9	47.7								

Table 11b. Monitoring Data - Stream Reach Data Summary Tate Farm (Ripshin Branch) - DMS Project Number 372 - Ripshin Branch

Tate Farm (Ripshin Branch) - DMS Parameter	-		Baseline					MY-1					MY-2					MY-3					MY-4					MY-5		—,
T at ameter			Dustinit			•																								_
Dimension and Substrate - Riffle	Min	Mean	Med	Max	SD	Min	Mean	Med	Max	SD	Min	Mean	Med	Max	SD	Min	Mean	Med	Max	SD	Min	Mean	Med	Max	SD	Min	Mean	Med	Max	SD
Only																												 '		I
BF Width (ft)						21.4	23.7	22.6	28.1	3.1	23.3	23.5	23.3	24	0.4	22.0	25.5	25.6	28.7	2.7	23.8	26.8	26.3	31	3.4	24.5	27.0	25.9	31.9	3.4
Floodprone Width (ft)								80					80					80				80						80		
BF Mean Depth (ft)						0.9	1.1	1.2	1.3	0.2	0.8	1.1	1.1	1.3	0.2	0.7	1.0	1.1	1.2	0.2	0.7	1.1	1.2	1.3	0.3	0.6	1.0	1.1	1.2	0.3
BF Max Depth (ft)						1.9	2.0	2.0	2.1	0.1	1.7	1.9	1.9	2.0	0.1	1.5	1.8	1.9	2.1	0.3	1.8	2.0	2.0	2.1	0.1	1.8	2.0	2.0	2.1	0.2
BF Cross Sectional Area (ft ²)						19.2	26.9	25.6	37.4	7.8	18.0	24.4	24.5	30.7	5.9	18.3	26.2	26.6	33.2	6.4	21.7	27.9	27.2	35.5	5.9	20.6	26.3	26.2	32.1	4.9
Width/Depth Ratio						19.5	21.2	20.6	24.1	2.2	17.9	23.3	22.7	30.0	5.6	20.0	25.9	23.7	36.1	7.1	20.3	27.0	21.7	44.3	11.6	22.4	30.7	23.5	53.2	15.0
Entrenchment Ratio						2.8	3.4	3.6	3.7	0.4	3.3	3.4	3.4	3.4	0.1	2.8	3.2	3.1	3.6	0.4	2.6	3.0	3.1	3.4	0.4	2.5	3.0	3.1	3.3	0.3
Bank Height Ratio								1.0					1.0					1.0					1.0					1.0		i
Profile -Downstream	_															-														
Riffle length (ft)						5.3	35.1	26.3	107.8	28.6	14.2	56.5	33	198.3	50.7	13	71	52	233	63	10	61	38	197	56	9.5	52.7	26.2	150.3	44.1
Riffle slope (ft/ft)						0.0059	0.0247	0.0260	0.0445	0.0105	0.0145	0.0238	0.0228	0.0355	0.0065	0.0014	0.0224	0.0239	0.0363	0.01	0.0056	0.0215	0.0212	0.0398	0.0096	0.0130	0.0237	0.0209	0.0479	0.0098
Pool length (ft)						8.6	27.7	24.7	77.0	16.2	10.1	34.1	27.8	102.9	25.5	11	43	46	95	26	14.0	34.7	28.7	80.8	21.9	13.9	28.0	23.1	74.5	13.8
Pool Max depth (ft)								3.4					3.3					3.4					3.3					3.2		I
Pool spacing (ft)						8.6	55.4	43.8	160.7	37.0	24.3	84.0	65.9	234.1	54.6	28	113	88	270	77	20.9	87.2	76.0	229.5	61.4	15.1	66.4	46.0	182.8	50.7
Pattern	_																													
Channel Beltwidth (ft)																														
Radius of Curvature (ft)																														1
Rc:Bankfull width (ft/ft)																														í
Meander Wavelength (ft)																														1
Meander Width ratio																														i
Additional Reach Parameters	_																													
Rosgen Classification								B/C-type					B/C-type					B/C-type	<u>}</u>				B/C-type	•				B/C-type	;	
Channel Thalweg Length (ft)								1444					1449					453					1499					1600		
Sinuosity								1.2					1.2					1.2					1.2					1.2		
Water Surface Slope (Channel) (ft/ft)						1.2 0.0182						0.0189					0.0191					0.019					0.0186			
BF slope (ft/ft)																														
Ri%/RU%P%G%/S%																								1					,	í
SC%/SA%/G%/C%/B%BE%																														1
d16/d35/d50/d84/d95																												1		
% of Reach with Eroding Banks								0					0					0			0						0			
Channel Stability or Habitat Metric																														
Biological or Other																														
Diological Of Other																														/

Table 11c. Monitoring Data - Dimensional Morphology Summary (Dimensional Parameters - Cross Sections)

Tate Farm (Ripshin Branch) - DMS Project Number 372 - Unnamed Tributary

			Cr	oss Sectio	n 6					Cr	oss Sectio	on 7					Cı	oss Sectio	n 8		
Parameter				Riffle							Pool							Riffle			
Dimension	MY0	MY1	MY2	MY3	MY4	MY5	MY5+	MY0	MY1	MY2	MY3	MY4	MY5	MY5+	MY0	MY1	MY2	MY3	MY4	MY5	MY5+
BF Width (ft)		17.4	16.8	17.5	16.8	17.2			16.0	15.8	14.7	13.5	9.3			17.4	18.7	5.0	5.6	57.0	
Floodprone Width (ft) (approx)		80.0	80.0	80.0	80.0	80.0			NA	NA	NA	NA	NA			80.0	80.0	80.0	80.0	80.0	
BF Mean Depth (ft)		1.0	0.9	1.0	0.9	0.8			0.9	0.6	0.3	0.4	0.7			0.5	0.4	0.5	0.0	0.1	
BF Max Depth (ft)		1.7	1.7	1.7	1.7	1.6			2.4	1.6	1.2	1.2	2.0			1.2	0.7	1.0	1.5	1.5	
BF Cross Sectional Area (ft ²)		17.4	15.8	16.9	14.4	14.3			14.5	8.9	4.9	5.1	6.2			8.9	7.6	2.6	4.6	4.7	
Width/Depth Ratio		17.4	17.9	18.1	19.6	20.7			NA	NA	NA	NA	NA			34.0	46.0	9.6	3.7	691.3	
Entrenchment Ratio		4.6	4.8	4.6	4.8	4.7			NA	NA	NA	NA	NA			4.6	4.3	16.0	14.3	1.4	
Bank Height Ratio		1.0	1.0	1.0	1.0	1.0			1.0	1.0	1.0	1.0	1.0			1.0	1.0	1.0	1.0	1.0	
d50 (mm)																1.0	7.3	8.4	8.4	8.4	

Table 11d. Monitoring Data - Stream Reach Data Summary

Tate Farm (Ripshin Branch) - DMS Project Number 372 - Unnamed Tributary

Parameter	0		Baseline		ĩ			MY-1					MY-2					MY-3					MY-4					MY-5		
Dimension and Substrate - Riffle Only	Min	Mean	Med	Max	SD	Min	Mean	Med	Max	SD	Min	Mean	Med	Max	SD	Min	Mean	Med	Max	SD	Min	Mean	Med	Max	SD	Min	Mean	Med	Max	SD
BF Width (ft)					1			17.4	1		16.8	17.8	17.8	18.7	1.3	5.0	11.3	11.3	17.5	8.8	5.6	11.2	11.2	16.8	6.7	5.7	11.5	11.5	17.2	8.1
Floodprone Width (ft)								80					80					80					80					80		
BF Mean Depth (ft)						0.5	0.8	0.8	1.0	0.4	0.4	0.7	0.7	0.9	0.4	0.5	0.8	0.8	1.0	0.4	0.8	0.8	0.8	0.8	0.0	0.8	0.8	0.8	0.8	0.0
BF Max Depth (ft)						1.2	1.5	1.5	1.7	0.4	0.7	1.2	1.2	1.7	0.7	1.0	1.4	1.4	1.7	0.5	1.5	1.6	1.6	1.7	0.1	1.5	1.6	1.6	1.6	0.1
BF Cross Sectional Area (ft ²)						8.9	13.2	13.2	17.4	6.0	7.6	11.7	11.7	15.8	5.8	2.6	9.8	9.8	16.9	10.1	4.6	9.4	9.4	14.1	6.7	4.7	9.5	9.5	14.3	6.8
Width/Depth Ratio)					17.4	26.1	26.1	34.8	12.3	18.7	32.7	32.7	46.8	19.9	10.0	13.8	13.8	17.5	8.1	7.0	14.0	14.0	21.0	9.9	7.1	14.3	14.3	21.5	10.2
Entrenchment Ratio								4.6			4.3	4.5	4.5	4.8	0.3	4.6	10.3	10.3	16.0	8.1	4.8	9.5	9.5	14.3	6.7	4.7	9.3	9.3	14.0	6.6
Bank Height Ratio								1.0					1.0					1.0					1.0					1.0	1	
Profile - Upstream																														
Riffle length (ft)						3.9	29.7	27.3	65	17.9	8.79	26.5	22.4	53	14.8	3	26	23	66	17	4.03	20.36	19.45	55.8	14.3	8.7	29.2	26.3	59.9	15.1
Riffle slope (ft/ft)						0.0064	0.0235	0.0233	0.0436	0.0108	0.0038	0.0305	0.0294	0.0639	0.0154	0.0000	0.0251	0.0230	0.0627	0.02	0.0048	0.0289	0.0299	0.0632	0.0165	0.0003	0.0242	0.0257	0.0518	0.0118
Pool length (ft)						7.1	20.8	19.0	43.2	10.8	7.4	22.7	23.7	39.9	9.8	3.0	13.0	11.0	33.0	7.0	6.0	17.0	15.3	33.0	8.9	7.0	12.1	11.4	22.3	5.7
Pool Max depth (ft)								2.4					1.6					1.2					1.2					2.0		
Pool spacing (ft)						7.1	43.6	39.3	103.9	28.7	12.9	42.7	47.9	85.2	18.3	8.0	37.0	35.0	78.0	20.0	10.6	37.2	37.9	88.5	20.3	11.0	40.0	40.5	66.8	18.3
Pattern																														
Channel Beltwidth (ft)																														
Radius of Curvature (ft)																														
Rc:Bankfull width (ft/ft)																														
Meander Wavelength (ft)																														
Meander Width ratio																														
Additional Reach Parameters																														
Rosgen Classification						T		B/C-type	;		Γ		B/C-type					B/C-type					B/C-type			r i i i i i i i i i i i i i i i i i i i		B/C-type		
Channel Thalweg Length (ft)								799					803					816					814					813		
Sinuosity	r							1.2					1.2					1.2					1.2					1.2		
Water Surface Slope (Channel) (ft/ft)								1.2 0.0201					0.0205					0.0196					0.0195					0.02		
BF slope (ft/ft)																														
Ri%/RU%P%G%/S%																													,	
SC%/SA%/G%/C%/B%BE%																														
d16/d35/d50/d84/d95																														
% of Reach with Eroding Banks								19					0					0			0							0		
Channel Stability or Habitat Metric																														
Biological or Other						1					1										1					1				

APPENDIX E

HYDROLOGY DATA

Table 12. Verification of Bankfull EventsTable 13. Wetland Hydrology Criteria Attainment SummaryGroundwater Gauge Graphs

 Table 12. Verification of Bankfull Events

Date of Data Collection	Date of Occurrence	Method	Photo (if available)
June 7, 2013	January 17, 2013	Approximately 3.9 inches of rain documented* at a nearby rain station over a four day period from January 14-17, 2013.	
April 28, 2013	January 30, 2013	Wrack and sediment observe on top of banks after approximately 4.2 inches of rain was documented* at a nearby rain station on January 30, 2013.	1-3
June 12, 2013	May 7, 2013	Approximately 4.34 inches of rain documented over three days at the onsite rain gauge.	
June 12, 2013	May 24, 2013	Wrack observed in the floodplain after approximately 5.92 inches of rain was documented over eight days at the onsite rain gauge.	4
August 13, 2013	July 4, 2013	Approximately 4.13 inches of rain documented over two days at the onsite rain gauge.	
August 13, 2013	August 10, 2013	Wrack and laid back vegetation observed in the flood plain after approximately 3.52 inches of rain was documented at the onsite rain gauge.	5
October 7, 2014	September 2-8, 2014	Wrack observed in floodplain after rainfall totaling 4.37 inches documented at the onsite rain gauge.	6
April 26, 2015	April 19, 2015	Wrack and laid-back vegetation observed on the floodplain after approximately 2.32 inches of rain documented at an onsite rain guage on 4/19/15 with an additional 3.21 inches documented the preceding 2 weeks.	7-8
November 5, 2015	July 14, 2015	Approximately 4.21 inches of rain documented over two days at the onsite rain gauge.	
November 5, 2015	October 3, 2015	Approximately 6.38 inches of rain documented over a ten day period at the onsite rain gauge.	
August 31, 2016	August 8, 2016	Approximately 2.57 inches of rain documented in one day after 3.59 inches of rain was documented over the previous five days at the onsite rain gauge.	

Tate Farm (Ripshin Branch) Stream and Wetland Restoration Site (DMS Project Number 372)

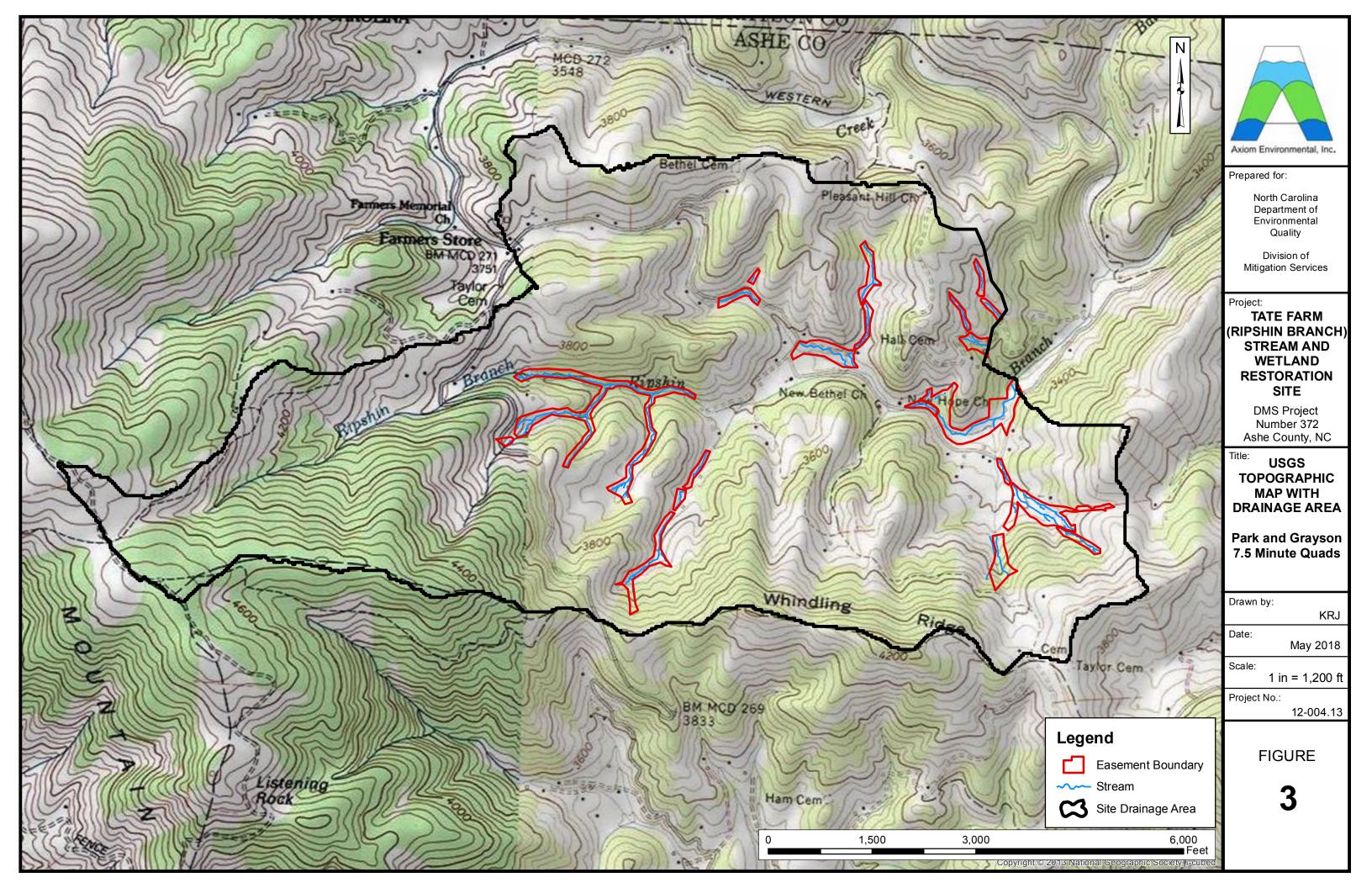
*Jefferson Weather Station (Weatherunderground 2014)

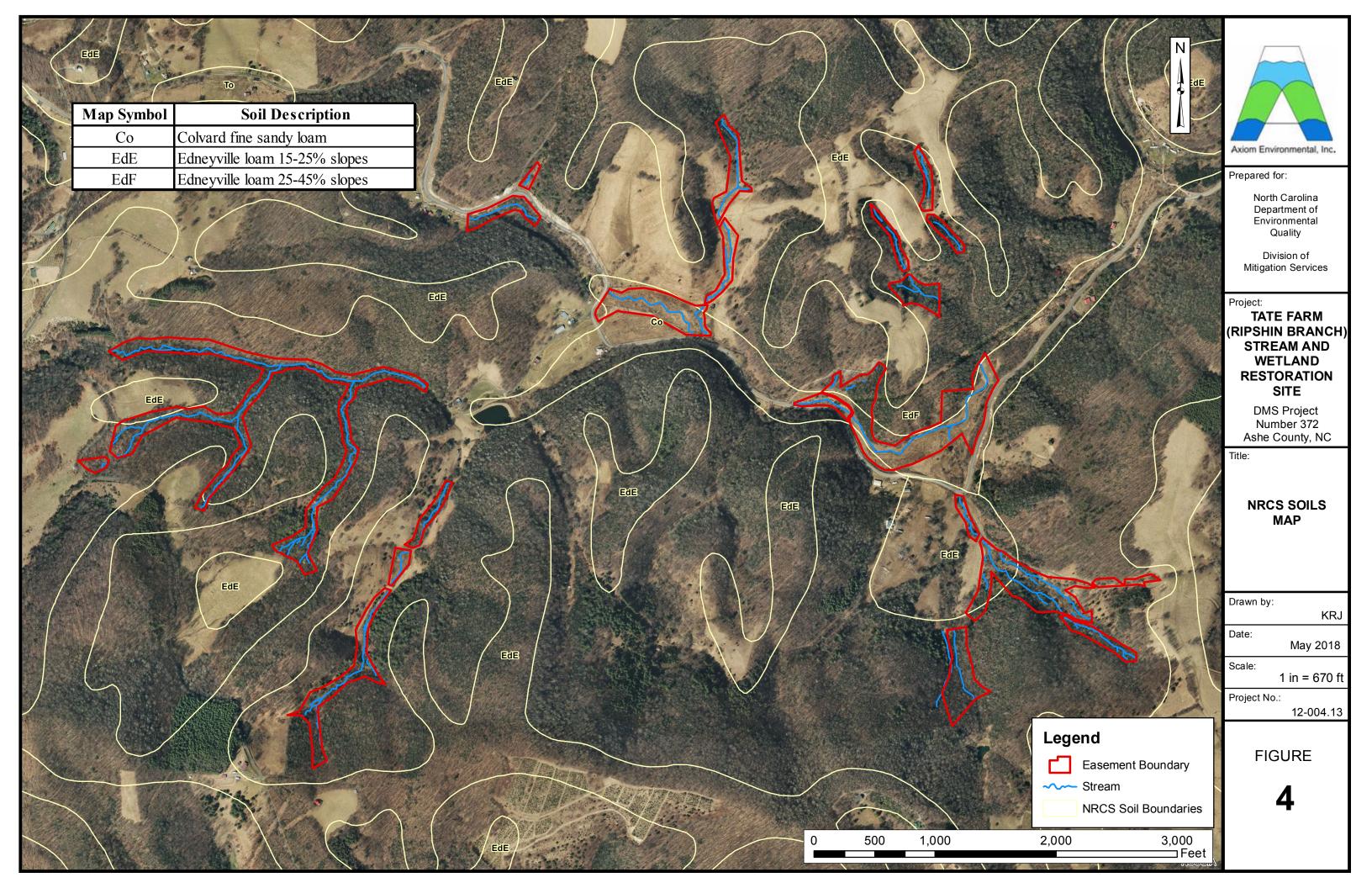
Axiom Environmental, Inc.

	Success C	,		、	Growing Season	/
Gauge	Year 1 (2012)*	Year 2 (2013)	Year 3 (2014)	Year 4 (2015)	Year 5 (2016)	Year 6 (2017)
1		Yes/130 Days (81%)	Yes/34 Days (21%)	Yes/22 Days (14%)	Yes/26 Days (16%)	Yes/58 Days (36%)
2		Yes/160 Days (100%)				
3		Yes/160 Days (100%)				
4		Yes/152 Days (95%)	No/14 Days** (8%)	Yes/46 Days (29%)	Yes/61 Days (38%)	No/0 Days^ (0%)
5		Yes/160 Days (100%)	Yes/47 Days (29%)	Yes/43 Days (27%)	Yes/60 Days (38%)	Yes/132 Days (83%)
6		Yes/160 Days (100%)	Yes/46 Days (29%)	Yes/114 Days (71%)	Yes/80 Days (50%)	Yes/79 Days (49%)

Table 13. Wetland Hydrology Criteria Attainment Summary Tate Farm (Rinshin Branch) Stream and Wetland Restoration Site (DMS Project Number 372)

* Groundwater Gauges were installed in October 2012; therefore, groundwater monitoring was initiated during the Year 2 (2013) monitoring year.


**Gauge 4 malfunctioned at beginning of 2014 growing season resulting in loss of data. A battery failure at the beginning of the growing season resulted in a loss of data. The gauge was replaced and is currently functioning properly, but during a subsequent visit additional data was lost due to a failed Meazura PDA. Based on hydrology of the additional gauges, in addition to abundant precipitation, it is likely that Gauge 4 would have met success for year 3 (2014).


^ Gauge 4 malfunctioned at the end of the Year 5 (2016) growing season, and because the contracted monitoring period was over, the gauge was removed and was not replaced. Because the contract for additional Year 6 (2017) monitoring was not executed until October 2017, no data for this gauge is available for Year 6 (2017). Based on hydrology of the other gauges, it is likely that Gauge 4 would have met success for year 6 (2017).

APPENDIX F

ADDITIONAL SITE DATA Figure 3. USGS Topographic Map Figure 4. NRCS Soils Map

Preconstruction Photographs

Preconstruction Photographs Extracted from Restoration Plan (dated March 9, 2007)

Axiom Environmental, Inc.

Monitoring Year 6 of 6 (2017) May 2018 Appendices Preconstruction Photographs (continued) Extracted from Restoration Plan (dated March 9, 2007)

Axiom Environmental, Inc.

Monitoring Year 6 of 6 (2017) May 2018 Appendices